留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性相位恢复的X射线相位衬度断层成像算法

倪文磊 周铁

倪文磊, 周铁. 基于非线性相位恢复的X射线相位衬度断层成像算法[J]. 应用数学和力学, 2008, 29(1): 93-103.
引用本文: 倪文磊, 周铁. 基于非线性相位恢复的X射线相位衬度断层成像算法[J]. 应用数学和力学, 2008, 29(1): 93-103.
NI Wen-lei, ZHOU Tie. An Algorithm for Phase Contrast X-ray Tomography Based on the Nonlinear Phase Retrieval[J]. Applied Mathematics and Mechanics, 2008, 29(1): 93-103.
Citation: NI Wen-lei, ZHOU Tie. An Algorithm for Phase Contrast X-ray Tomography Based on the Nonlinear Phase Retrieval[J]. Applied Mathematics and Mechanics, 2008, 29(1): 93-103.

基于非线性相位恢复的X射线相位衬度断层成像算法

基金项目: 科技部国家重点基础研究发展计划资助项目(2003CB716101);国家自然科学基金(重点)资助项目(60532080);教育部科学研究重大资助项目(306017)
详细信息
    作者简介:

    倪文磊(1980- ),男,山东人,博士(联系人.E-mail:evenlying@gmail.com);周铁(1963- ),男,副教授,博士生导师(E-mail:tzhou@math.pku.edu.cn).

  • 中图分类号: O29;O434.19

An Algorithm for Phase Contrast X-ray Tomography Based on the Nonlinear Phase Retrieval

  • 摘要: 对全息测量下的X射线相位衬度断层成像问题提出了一种新的重建算法.该算法的主要想法是利用牛顿迭代法求解非线性的相位恢复问题.我们证明了牛顿方向满足的线性方程是非适定的,并利用共轭梯度法得到方程的正则化解.最后利用模拟数据进行了数值实验,数值结果验证了算法的合理性以及对噪声数据的数值稳定性,同时通过与线性化相位恢复算法的数值结果比较说明了新算法对探测数据不要求限制在Fresnel区域的近场,适用范围更广.
  • [1] Lewis R A.Medical phase contrast X-ray imaging: Current status and future prospects[J].Physics in Medicine and Biology,2004,49(16):3573-3583. doi: 10.1088/0031-9155/49/16/005
    [2] Suzuki Y,Yagi N,Uesugi K.X-ray refraction-enhanced imaging and a method for phase retrieval for a simple object[J].Journal of Synchrotron Radiation,2002,9(3):160-165. doi: 10.1107/S090904950200554X
    [3] Spanne P ,Raven C,Snigireva I,et al.In-line holography and phase-contrast microtomography with high energy X-rays[J].Physics in Medicines and Biology,1999,44(3):741-749. doi: 10.1088/0031-9155/44/3/016
    [4] Arfelli F, Assante M,Bonvicini V,et al.Low-dose phase contrast X-ray medical imaging[J].Physics in Medicine and Biology,1998,43(10):2845-2852. doi: 10.1088/0031-9155/43/10/013
    [5] Ingal V N, Beliaevskaya E A,Brianskaya A P,et al.Phase mammography-anew technique for breast investigation[J].Physics in Medicine and Biology,1998,43(9):2555-2567. doi: 10.1088/0031-9155/43/9/009
    [6] Ando M, Hosoya S.An attempt at X-ray phase-contrast microscopy[A].In:Shinoda G, Kohra K,Ichinokawa T, Eds.Proceedings of the 6th International Conference of X Ray Optics and Microanalysis[C].Tokyo:Univerisity of Tokyo Press, 1972, 63-68.
    [7] Momose A. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer[J].Nuclear Instruments and Methods in Physics Research A,1995,352(3):622-628. doi: 10.1016/0168-9002(95)90017-9
    [8] Chapman D, Thomlinson W,Johnston R E,et al.Diffraction enhanced X-ray imaging[J].Physics in Medicine and Biology, 1997,42(11):2015-2025. doi: 10.1088/0031-9155/42/11/001
    [9] Dilmanian F A, Zhong Z, Ren B,et al.Computed tomography of X-ray index of refraction using the diffraction enhanced imaging method[J].Physics in Medicine and Biology,2000,45(4):933-946. doi: 10.1088/0031-9155/45/4/309
    [10] Pfeiffer F,Weitkamp T,Bunk O,et al.Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J].Nature Physics,2006,2(4):258-261. doi: 10.1038/nphys265
    [11] Momose A,Yashiro W,Takeda Y,et al.Phase tomography by X-ray talbot interferometry for biological imaging[J].Japanese of Applied Physics,2006,45(6A):5254-5262. doi: 10.1143/JJAP.45.5254
    [12] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J].Optics Communications,1997,133(1):339-346. doi: 10.1016/S0030-4018(96)00454-3
    [13] Barty A, Nugent K A, Roberts A,et al.Quantitative phase tomography[J].Optics Communication,2000,175(4):329-336. doi: 10.1016/S0030-4018(99)00726-9
    [14] Gureyev T E, Raven C,Snigirev A,et al.Hard X-ray quantitative non-interferometric phase-contrast microscopy[J].Journal of Physics D: Applied Physics,1999,32(5):563-567. doi: 10.1088/0022-3727/32/5/010
    [15] Jonas P, Louis A K. Phase contrast tomography using holographic measurements[J].Inverse Problems,2004,20(1):75-102. doi: 10.1088/0266-5611/20/1/005
    [16] Bronnikov A V.Theory of quantitative phase-contrast computed tomography[J].Journal of the Optical Society of America A,2002,19(3):472-480. doi: 10.1364/JOSAA.19.000472
    [17] Born M,Wolf E.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M].Cambridge:Cambridge University Press, 2001.
    [18] Gureyev T E, Wilkins S W.On X-ray phase imaging with a point source[J].Journal of the Optical Society of America A,1998,15(3):579-585. doi: 10.1364/JOSAA.15.000579
    [19] Als-Nielsen J, McMorrow D.Elements of Modern X-Ray Physics[M].New York:Wiley, 2001.
    [20] Wu X,Deans A E,Liu H.X-ray diagnostic techniques[A].In:Vo-Dinh T,Ed.Biomedical Photonics Handbook[C].Tampa: CRC Press,2003,26.1-26.34.
    [21] Gureyev T E, Pogany A, Paganin D M,et al.Linear algorithms for phase retrieval in the Fresnel region[J].Optics Communications,2004,231(1/6):53-70. doi: 10.1016/j.optcom.2003.12.020
    [22] Huntley J M.Noise-immune phase unwrapping algorithm[J].Applied Optics,1989,28(15):3268-3270. doi: 10.1364/AO.28.003268
    [23] Kak A C,Slaney M.Principles of Computerized Tomographic Imaging[M].New York:IEEE Press,1988.
    [24] Kaipio J, Somersalo E.Statistical and Computational Inverse Problems[M].New York:Springer, 2005.
  • 加载中
计量
  • 文章访问数:  2606
  • HTML全文浏览量:  64
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-03
  • 修回日期:  2007-12-17
  • 刊出日期:  2008-01-15

目录

    /

    返回文章
    返回