| [1] | Barclay H J. Models for pest control using predator release, habitat management and pesticide release in combineation[J].J Appl Ecol,1982,19(2):337-348. doi:  10.2307/2403471 | 
		
				| [2] | Paneyya J C. A mathematical model of periodically pulse chemotherapy: tumor recurrence and metastasis in a competition environment[J].Bull Math Biol,1996,58(3):425-447. doi:  10.1007/BF02460591 | 
		
				| [3] | d′Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Math Biol,2002,179(1):57-72. | 
		
				| [4] | Roberts M G, Kao R R.The dynamics of an infectious disease in a population with birth pulse[J].Math Biol,2002,149:23-36. | 
		
				| [5] | Hethcote H. The mathematics of infectious disease[J].SIAM Review,2002,42(4):599-653. | 
		
				| [6] | DeBach P.Biological Control of Insect Pests and Weeds[M].New York: Rheinhold, 1964. | 
		
				| [7] | DeBach P, Rosen D. Biological Control by Natural Enemies[M]. 2nd ed. Cambridge: Cambridge University Press,1991. | 
		
				| [8] | Freedman H J. Graphical stability, enrichment, and pest control by a natural enemy[J].Math Biosci,1976,31(3/4):207-225. doi:  10.1016/0025-5564(76)90080-8 | 
		
				| [9] | Grasman J, Van Herwaarden O A,et al.A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control[J].Math Biosci,2001,169(2):207-216. doi:  10.1016/S0025-5564(00)00051-1 | 
		
				| [10] | Caltagirone L E,Doutt R L. Global behavior of an SEIRS epidemic model with delays,the history of the vedalia beetle importation to California and its impact on the development of biological control[J].Ann Rev Entomol,1989,34:1-16. doi:  10.1146/annurev.en.34.010189.000245 | 
		
				| [11] | Freedman H I,Gopalsamy K. Global stability in time-delayed single species dynamics[J].Bull Math Biol,1986,48(5/6):485-492. | 
		
				| [12] | Zaghrout A A S, Attalah S H. Analysis of a model of stage-structured population dynamics growth with time state-dependent time delay[J].Appl Math Comput,1996,77(2):185-194. doi:  10.1016/S0096-3003(95)00212-X | 
		
				| [13] | Aiello W G, Freedman H I. A time-delay model of single-species growth with stage-structure[J].Math Biosci,1990,101(2):139-153. doi:  10.1016/0025-5564(90)90019-U | 
		
				| [14] | Aiello W G.The existence of nonoscillatory solutions to a generalized, nonautonomous,delay logistic equation[J].J Math Anal Appl,1990,149(1):114-123. doi:  10.1016/0022-247X(90)90289-R | 
		
				| [15] | Rosen G.Time delays produced by essential nonlinearity in population growth models[J].Bull Math Biol,1987,49(2):253-255. | 
		
				| [16] | Wangersky P J,Cunningham W J. On time large equations of growth[J].Proc Nat Acad Sci USA,1956,42(9):699-702. doi:  10.1073/pnas.42.9.699 | 
		
				| [17] | Fisher M E, Goh B S. Stability results for delay-recruitment models in population dynamics[J].J Math Biol,1984,19:117. | 
		
				| [18] | Wang W. Global behavior of an SEIRS epidemic model with delays[J].Appl Math Letters,2002,15(4):423-428. doi:  10.1016/S0893-9659(01)00153-7 | 
		
				| [19] | Xiao Y N, Chen L S. A ratio-depengent predator-prey model with disease in the prey[J].Appl Math Comput,2002,131(2/3):397-414. doi:  10.1016/S0096-3003(01)00156-4 | 
		
				| [20] | Xiao Y N, Chen L S.An SIS epidemic model with stage structure and a delay[J].Acta Math Appl,English Series,2002,18(4):607-618. doi:  10.1007/s102550200063 | 
		
				| [21] | Xiao Y N, Chen L S,Bosh F V D. Dynamical behavior for stage-structured SIR infectious disease model[J].Nonlinear Analysis:RWA,2002,3(2):175-190. doi:  10.1016/S1468-1218(01)00021-9 | 
		
				| [22] | Xiao Y N, Chen L S.On an SIS epidemic model with stage-structure[J].J System Science and Complexity,2003,16(2):275-288. | 
		
				| [23] | Lu Z H, Gang S J,Chen L S. Analysis of an SI epidemic with nonlinear transmission and stage structure[J].Acta Math Science,2003,23(4):440-446. | 
		
				| [24] | Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state dependent time delay[J].SIAM, J Appl Math,1992,52(3):855-869. doi:  10.1137/0152048 | 
		
				| [25] | Murray J D.Mathematical Biology[M].Berlin, Heidelberg, New York: Springer-Verlag, 1989. | 
		
				| [26] | YANG Kuang. Delay Differential Equation With Application in Population Dynamics[M]. N Y: Academic Press, 1987,67-70. | 
		
				| [27] | Cull P. Global stability for population models[J].Bull Math Biol,1981,43(1):47-58. | 
		
				| [28] | LIU Xian-ning,CHEN Lan-sun. Compex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J].Chaos, Soliton and Fractals,2003,16(2):311-320. doi:  10.1016/S0960-0779(02)00408-3 | 
		
				| [29] | Lakshmikantham V, Bainov D D, Simeonov P.Theory of Impulsive Differential Equations[M].Singapor: World Scientific, 1989. | 
		
				| [30] | Bainov D, Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications[M].England:Longman,1993. |