留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不可压饱和多孔弹性梁的大挠度非线性数学模型

杨骁 王琛

杨骁, 王琛. 不可压饱和多孔弹性梁的大挠度非线性数学模型[J]. 应用数学和力学, 2007, 28(12): 1417-1424.
引用本文: 杨骁, 王琛. 不可压饱和多孔弹性梁的大挠度非线性数学模型[J]. 应用数学和力学, 2007, 28(12): 1417-1424.
YANG Xiao, WANG Chen. Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1417-1424.
Citation: YANG Xiao, WANG Chen. Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1417-1424.

不可压饱和多孔弹性梁的大挠度非线性数学模型

基金项目: 国家自然科学基金资助项目(10272070);上海市重点学科建设资助项目(Y0103)
详细信息
    作者简介:

    杨骁(1965- ),教授(联系人.Tel:+86-21-56331519;Fax:+86-21-66134463;E-mail:xyang@shu.edu.cn).

  • 中图分类号: O343.5;O357.3

Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams

  • 摘要: 在孔隙流体仅存在沿梁轴线方向扩散的假定下,建立了微观不可压饱和多孔弹性梁大挠度问题的非线性数学模型.利用Galerkin截断法,研究了固定端不可渗透、自由端可渗透的饱和多孔弹性悬臂梁在自由端突加集中载荷作用下的非线性弯曲,得到了梁骨架的挠度、弯矩以及孔隙流体压力等效力偶等的时间响应和沿轴线的分布.比较了大挠度非线性和小挠度线性理论的结果,揭示了两者间的差异.研究发现大挠度理论的结果小于相应的小挠度理论结果,并且,大挠度理论的结果趋于其稳态值的时间小于相应的小挠度理论结果趋于其稳态值的时间.
  • [1] Ehlers W, Markert B. On the viscoelastic behaviour of fluid-saturated porous materials[J].Granular Matter,2000,2(3):153-161. doi: 10.1007/s100359900037
    [2] Schanz M, Cheng A H D. Transient wave propagation in a one-dimensional poroelastic column[J].Acta Mechanica,2000,145(1):1-18. doi: 10.1007/BF01453641
    [3] Leclaire P, Horoshenkov K V. Transverse vibrations of a thin rectangular porous plate saturated by a fluid[J].J Sound Vibration,2001,247(1):1-18. doi: 10.1006/jsvi.2001.3656
    [4] Theodorakopoulos D D, Beskos D E. Flexural vibrations of poroelastic plates[J].Acta Mechanica,1994,103(1/4):191-203. doi: 10.1007/BF01180226
    [5] Brsan M.On the theory of elastic shells made from a material with voids[J].Internat J Solids and Structures,2006,43(10):3106-3123. doi: 10.1016/j.ijsolstr.2005.05.028
    [6] Nowinski J L, Davis C F.The flexural and torsion of bones viewed as anisotropic poroelastic bodies[J].Internat J Engrg Sci,1972,10(12): 1063-1079. doi: 10.1016/0020-7225(72)90026-2
    [7] Zhang D, Cowin S C.Oscillatory bending of a poroelastic beam[J].J Mech Phys Solids,1994,42(10):1575-1599. doi: 10.1016/0022-5096(94)90088-4
    [8] Li L P, Schulgasser K, Cederbaum G. Theory of poroelastic beams with axial diffusion[J].J Mech Phys Solids,1995,43(12):2023-2042. doi: 10.1016/0022-5096(95)00056-O
    [9] Li L P, Schulgasser K, Cederbaum G. Large deflection analysis of poroelastic beams[J].Internat J Non-Linear Mech,1998,33(1):1-14. doi: 10.1016/S0020-7462(97)00003-6
    [10] Cederbaum G, Schulgasser K,Li L P. Interesting behavior patterns of poroelastic beams and columns[J].Internat J Solids Structures,1998,35(34): 4931-4943. doi: 10.1016/S0020-7683(98)00102-4
    [11] Li L P, Cederbaum G, Schulgasser K. A Finite element model for poroelastic beams with axial diffusion[J].Computers and Structures,1999,73(6):595-608. doi: 10.1016/S0045-7949(98)00226-0
    [12] 杨骁,李丽. 不可压饱和多孔弹性梁、杆动力响应的数学模型[J]. 固体力学学报, 2006,27(2):159-166.
    [13] de Boer R, Didwania A K. Saturated elastic porous solids: incompressible, compressible and hybrid Binary models[J].Transport in Porous Media,2001,45(3):425-445.
    [14] de Boer R.Theory of Porous Media: Highlights in the Historical Development and Current State[M].Berlin, Heidelberg: Springer-Verlag, 2000.
    [15] Gere J M, Timoshenko S P.Mechanics of Materials[M].second edition. New York: Van Nostrand Reinhold, 1984.
  • 加载中
计量
  • 文章访问数:  3273
  • HTML全文浏览量:  160
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-17
  • 修回日期:  2007-11-05
  • 刊出日期:  2007-12-15

目录

    /

    返回文章
    返回