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Abstract: We intend to improve the finite-difference lattice Boltzmann method ( FDLBM) for
the use of direct numerical simulation of aerodynamic sound. Using a feature of the LB-based
solver, the constant advection velocity in the kinetic equation enables easy implementation of
higher-order upwind difference schemes, resulting in high resolutions for sound waves as well
as turbulent flow. We release a new particle model which recovers the compressible Navier-
Stokes system with flexible specific heat ratio in the 3D space. In addition, we introduce a heat
flux modification, which enables us to set Prandtl number freely under the Bhatnagar-Gross-
Krook( BGK) collision operator. Our new method performs well in validation problems of weak
acoustic waves in a shock tube, and laminar Taylor-Couette flow with a temperature gradient.
We conduct a 3D simulation of flow around the NACA0012 aerofoil. The Reynolds number,
Mach number and angle of attack are 2x10°, 8.75x107* and 9° respectively. Our results are in
good agreement with the experimental data about the position of the separation bubble near the

leading edge and the Mach number dependence of the surface pressure fluctuation intensity.
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Introduction

An advantage of the FDLBM'" is the constant advection velocity of the discrete Bhat-
nagar-Gross-Krook ( DBGK) equation, which permits easy implementation of higher-order
schemes. The FDLBM with a nonlinear higher-order upwind biased scheme achieves high
resolution for wall turbulence'? . It is expected that the FDLBM exhibits good performance
for sound waves, and becomes a useful method for analysis of the aerodynamic noise from
turbulence. However, the conventional LB-models, D2Q9, D3Q15 and D3Q19, cannot han-
dle thermodynamics of compressible fluid.

1.[3]

Tsutahara et al.'”' conducted direct simulation with the FDLBM and new thermal parti-

cle models which can handle the arbitrary specific heat ratio. These models require 42 dis-
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tribution functions in the 2D space and 78 in the 3D. Then, a downsized particle model sug-
gested by Kataoka and Tsutahara'*’ which recovers the compressible Navier-Stokes system
consists of 16 velocities in the 2D space. Though mentioned simultaneously, a definite
model with 32 velocities in the 3D space remains veiled today because of its poor numerical
performance.

We propose a D3Q32 model and the adjusting method for the Prandtl number. We cre-
ate a particle velocity set with “rotation” whose degree depends on the specific heat ratio,
obtaining sufficient numerical performance for direct simulation of aerodynamic sound in
the 3D space. Handling arbitrary Prandtl number with the BGK collision operator, we apply
a simple heat flux modification based on “Prandtl number fix” of Xu’s BGK scheme'’’.

Two validation tests are conducted with the D3Q32 model. We confirm the speed of
sound and invest the executable temperature range in a shock tube test of weak acoustic
waves'”. The laminar Taylor-Couette flow with a temperature gradient is implemented to
confirm the Prandtl number modification from the viewpoint of isotropic diffusion and Gali-
lean invariance. We finally apply the model to flow around the NACAOO012 aerofoil at mod-
erate Reynolds numbers'® to survey the capability in direct simulation of aerodynamic
sound at low Mach numbers.

The rest of this paper is organized as follows. Section 1 provides our numerical model-
ling in detail. Results of the 2 validation problems are reported in section 2. Numerical re-
sults of the NACA aerofoil problem are shown and compared with the experimental and nu-

merical data'”’ in section 3. Section 4 presents our conclusions.

1 Methodology

1.1 Governing equation

The governing equation of the finite-difference lattice Boltzmann method'* is

o g S-S,

+c . = 1
o o, b (1)

i

where ¢ is the time and x,(i = 1,2,3) is the Cartesian coordinate; ¢, is the particle velocity

of the m- th particle, f

m

is the distribution function; /. is the local equilibrium distribution
function and ¢ is the relaxation time; and g, is the modified distribution function defined as
follows :

&W{F;%ﬁ;ﬁ, (2)

where « is the modified coefficient which adjusts relation between ¢ and diffusion coeffi-

cients in the macroscopic system'® , and | . is the precaution against redefinition in the

org

Prandtl number fix (seen in subsection 1.5).

1.2 Compressible Navier-Stokes system
Our compressible lattice Boltzmann model aims at the compressible Navier-Stokes

(NS) system:
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ap  Ipu;
P =0, (3)
ot Ox,
dou, dpuu. 9 P!,
pu; oputy dp i (4)
ot ax]. 0x, 8xj
E) dpe +plu, 9 ( oT
dpe ST e (5)
Jat ox; ax]. axj v

where p, u, , and T are the density, velocity, and temperature respectively; e is the total
energy per unit mass written in eq.(6) , and p is the pressure determined by the equation of

state (eq.(7)); and P is the viscous stress tensor defined in eq.(8), and A is the thermal

conductivity,
2

b u,
= — T + — 6
=T (6)
p=pT, (7)
du, Odu, 2 du, du,
Pi=—-p| L+ "= 58 | —uy—39,, 8
’ M(axi dx; 3 ox, ”j H ox, " (8)

where b in eq.(6) is the internal degree of freedom, which determines specific heat ratio y
written in eq.(9) ; andu, u, in eq.(8) are the shear viscosity and the bulk viscosity,
b+2
= . 9
Y= (9)
It is noted that we handle dimensionless values and gas constant is set to 1 in this paper.
Table 1 The particle velocity set of D3Q32

m translation c,; rotation 7,,
1~6 (£2,0,0) cye 0
7~12 (£2,0,0)cye 2
13~24 (£2,+2,0) cyc 0
25~32 (£1,x1,+1) Vb -3

? z z
0**—>y o y %y
X% X X
(a)m=1~12 (b)ym =13 ~ 24 (c)m =25~ 32

Fig. 1 Schematics of the the particle velocity set

1.3 Macroscopic variables and local equilibrium distribution function
Macroscopic variables are defined by the distribution function as
2 2
c + 77"1

1 1 mi
p'_Em.ﬁn’ u; '_p memcmi’ e'_p mem ) ’

and the local equilibrium distribution function is given by

(10a~c)

far=plA, +B,c,u, +D,cc uu +E,c.c.cuuul, (11)

m=-mi L m-mimy i m=mi~mj
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where A, , B, , D, and E, are the model coefficients. The forms of them are identical to

those of the 2D model by Kataoka and Tsutahara'*'.
The constraints for /' to recover the NS system in eq.(1) are

Z fﬂq _p z fm mz pui’ (123,b>
e nu nm
D S, =puu; + pdy, D, fmq = pe, (12¢,d)
Z f;n cmlcm/cmk - (uz Jk + u’ 811 + u’/8 ) + pu’ u; u‘k ’ ( ]‘26)
2 2

2 S "= (pe +pu,, (12f)
z eq mk nm =T + 5. + +2 (12

fm mt mj 2 (pe P) i (pe p)uiuj' g)
Under these constraints, u, u, and A are settled as egs.(13a~c), which indicate Pr = 1.

2 2 b+2
MZP(¢‘G),MB=[3—b]P(Cb—a),A:Zp(tb—a). (13a~c)

1.4 Particle velocity set of D3Q32 model

We determine particle velocities as shown in table 1. The velocity set with the 2 sublat-
tices (m =13 ~ 24 and m =25 ~ 32) shown in fig. 1 is needed to recover the compressible
NS system. From this, we use x,y,z along with x, ,x,,x,. The rotational speed for m =25 ~
32, parameterized by b , gives us good numerical performance especially in isotropy of dif-
fusion. The same velocities form =1 ~ 6 andm =7 ~ 12 are settled for the convenience of

the Prandtl number fix (seen in subsection 1.5).

Once determining the particle velocity set, we can concrete 4,,, B, , D, and E, in eq.
(11) automatically and uniquely ;
b+8 1 3 1
A g=—1+——T+-—G+|— - —-H|u 14
1o 8 8 (8 32 )” (142)
4b + 12 3b° +23b - 96 b-3
Al == + ’ T - G+
3(8-5) 24(8 - b) 8(8-10)
21b =56 b -2 2 (14b)
48(8 = b) 32(8-1b)
4 4b - 76T + 3G - 4u; (14¢)
B T8 -6y ¢
64 — (8b + 48)T + 6G — (32 - 3H)u’
Ay 3 = ) (14d)
16(8 - b)
b-2 b-3 1
= - T_f 2 15
Y T A (15)
b-3 b-3
B =- + T 15b
7~12 24 16 ’ ( )
1 1
By oyy=——+—T, (15¢)

48 32



A 3D Compressible Lattice Boltzmann Model and Its Appliaction to

1300 Low Mach Number Turbulent Flow
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Die =%{’ D7 =6558_—1:) ) 128b(§;fb)H’ (16a,b)
P L (160,
16 :%’ E, ., =b3%, E; =%, Ey 5 :4i8’ (17a~d)

where G and H are defined in eqs.(18a, b) for simplicity. Though a restriction, b < 8, that
isy > 1.25, is imposed from those coefficients, the value of the air is still in range,
G=T((b+2)T+u), H=(b+4)T + u_. (18a, b)
1.5 Prandtl number fix in FDLBM
Applying the Prandtl number fix of Xu’s BGK scheme'” | we introduce a practical pro-
cedure for the arbitrary Prandtl number in the FDLBM. He derived a heat flux with the BGK
collision operator from an integral of the distribution function, multiplied the flux by (1/Pr
- 1), and added it to the energy equation. This method prevents 2 probable difficulties.
One is dilatation of computational time in the multi-relaxation time'® or a further realistic
collision operator. The other is dependence on accuracy of the viscous term to the resolu-
tion of wall turbulence''” from an extra temperature differential term.
By introducing Xu’ s procedure into the FDLBM, heat flux h, can be derived from sum-
mation instead of integration. Watching the effect of modified coefficient « , we define h, as
a (Cm_,' - u,-)z + 771
h, ==(1 - ¢j Y fule, —u) 5 : (19)
It is noted that &, in the D3Q32 model can recover the heat flux at the unit Prandtl number,
that is

_b+2 oT

h; —+0 . 20
TN (¢) (20)
Then, we re-modify the advection term of eq.(1) to
a 1 a
=1 —-—\f, * | - 1| W h |+—f1 21
gm [ d) ) l:fm (Pr j mcm] ]:| (b fm ’ < )
where W, are the weighting coefficients which satisfy the constraints as follows:
Z Wmcmicmj = 0 ’ 2 Wmcmicmjcmk = O ’ Z Wmcmicmj< crznlr + nrzn ) = 8Lj' ( 22a~ C)

Equations(23a~c) mean the additional term modifies the energy flux and doesn’t af-
fect the mass and momentum fluxes. We determine W, in egs.(23a~c) from a viewpoint of
computational efficiency,

Loy 1
327 7R3

1.6 Discretization schemes

Wi s=- Wi 5 =0. (23a~c)

Finally, we briefly explain the discretization schemes for eq.(1). Ketcheson’s explicit

4th-order 2-storage Runge-Kutta scheme''"’ is used for time integration. For space differen-
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tiation, the 3rd-order upwind compact scheme is chosen for validation problems to exclude

numerical instability of the scheme, and the higher-order nonlinear upwind biased

scheme'? is applied for an application problem due to its high performance in turbulent
flow.
£,=1.0+1x10°}{p,=1.0
u, =0 u, =0
T =T, T, =T,
Fig. 2 Initial conditions in the shock tube
1x107F 1 1x107°} ﬂmuua’mﬂ{i !
| ‘
8107+ 8x1077} l &
6x107F 6x107"} L X "
A
p S Ap - 4 X | ‘
4x10 'H 4x10 '+ X 1
| = 1=60,78V ‘ L| e 1=60,78V
2x107'f 1=60,32V | 2x107¢ 1=60,32V i
=120, 78V X =120, 78V ‘ +
0 L == = 1207 32V ; 4 0 L = 120’ 32V &:IIHEIIIIIIIW q
200 100 100 200 =200 -100 T 100 200
distance d distance d

(a)y = 1.4, T, = 1.0

(b)y = 4/3, Ty = 1.0

Fig. 3 Pressure variation profiles(the present scheme (32 V) agrees well

with the conventional model (78 V) at various y values)

2 Validation

2.1 Weak acoustic waves in shock tube
We conduct a numerical test of weak acoustic waves in a shock tube'*’ to validate the
sound speed of the D3Q32 model. The relation between the speed of sound and the particle
velocities varying with the temperature and the stable range of temperature is also investi-
gated.

The initial conditions are shown in fig. 2. The parameters are specific heat ratioy , and

initial temperature 7,,. We prepare the 1D grid which is along the x -direction in fig. 1 with

unit intervals, and set the time step to 0.8. Both ¢ and «a are set to 0.13 for inoperativeness
of the diffusion and computational efficiency of the collision process.

The pressure profiles at different y values are shown in fig. 3. The present results (32
V) show excellent agreement with those of the conventional 3D FDLBM (78 V)"*!. And
then, our model is stable for T, € [0.7,1.4] aty = 1.4; still, the instability on the lower
temperature side is not seen in the conventional model. The D3Q32 model achieves the ar-
bitrary specific heat ratio with less than half number of distribution functions of the con-
ventional model. And, it is sufficient for most of subsonic flows to be executable in distri-
bution with double temperature ratios.
2.2 Laminar Taylor-Couette flow with temperature gradient

We validate the Prandtl number fix in the laminar Taylor-Couette flow with the 3-step
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Prandtl numbers, 0.72, 1.0 and 2.5 from the viewpoint of isotropy and Galilean invariance.
The computational domain is described in fig. 4. We set R, = 1.5L and R, = 2.5L . Just the in-
ner cylinder is rotated with angular velocity U/(2wR,) . Reynolds number pUL/w is set to
100 for laminar solution, the Mach number for U is set to 0.1, and the specific heat ratio is
1.4 as the value of the air. The nonslip and isothermal boundary condition is applied on the
cylinder surfaces, where the ratio of the outer/inner temperature is set to (1-1/(1.4x
10%)).

Fig. 4 The Taylor-Couette flow

1.0re, 0 Pr=0.72 | 0.14r 0 Pr=072 |
o o Pr=1.0 0.12+ o Pr=1.0
0.8+ a Pr=2.5 Pr=2.5
o 0.101 1
6 o IS L 1
E, 0.6 - ; 0.08
N o I
s 04l LI <1 0.06 600900
L. 0.04} ooo080@g°0
0.2} o] oQ B8.09%,
o 0.02f ° 8 °8g
‘o =) &)
0 B 1 ore S
1.5 2.0 2.5 1.5 2.0 2.5
r/L r/L

(a) The circumferential velocity

(b) The temperature difference

Fig. 5 Steady solutions forx € [ - 2.5, — 1.5], y = 1 at various Prandtl numbers

for| V,| = 0(all results agree with the theoretical profiles)

Table 2 The numerical setup for the NACA0012 simulation

parameter value
specific heat ratio y 1.4
temperature T 0.9
Reynolds number based on chord length Re,, 2.0x10°
Mach number Ma 8.75x1072
Prandtl number Pr 0.72
angle of attack 6,0, /(°) 9
number of grid points 594/139/192
grid width of first layer on aerofoil A ;, =8.69x107°L
spanwise grid width Az 5.0x1073 L
time step At =8.69x107°
modified coefficient a =1.45x10"°
relaxation time ¢ =1.50x107°
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We provide temperature at inner boundary 0.9 which works best; thus, the reference
sound speed is about 1.12. For the sake of the unit reference pressure, the reference densi-
ty is set to 10/9. We handle a plane perpendicular to the z -direction in fig. 1, and prepare
the polar grid with 75/17 points along the circumferential/radial direction. The minimum
grid width is about 5.77x107*, and we set the time step to about 4.61x107>. As a result, the
advantageous value of a is about 7.69x107, and ¢ is obtained as 8.94x107".

- [V;]=0.0 \}V,\=0.81 ‘f/"‘:l'z.l.

=25t T o]
=25 -1.5 -05 0.5 1.5 2.5

Fig. 6 Isolines of 6 levels from 7' . to T . for Pr = 0.72

min max

(isotropic profiles keep for| V| = 0.0, 0.81)

Grid velocity V, to confirm the Galilean invariance of the procedure is introduced into
eq.(1) as follows:

U g, _fu' —Ja
ad

+ (e, = V) . = 6 (24)

which is terser than the previous arbitrary Lagrangian Eulerian formulation''?'. The differ-
ence becomes O(¢*) , and no significant effect is taken into the recovery of the NS sys-
tem. We determine |V, | as 0.0, 0.81 and 1.21 under the given condition 3V, =4V,. The initial
condition is steady with the reference density and temperature. The number of time steps is
about 21 000 to reach stable solutions.

Profiles along the radial direction at various Prandtl numbers for |V, |= 0 are shown in
fig. 5. All results agree with the theoretical profiles, and the Prandtl number fix works suc-
cessfully. It is noted that the theoretical values are derived with the constant diffusion coef-
ficients in spite of the proportion to temperature in the FDLBM. Fig. 6 shows the tempera-
ture profiles for Pr=0.72. We can see isotropy for |V, |=0,0.81. These results show the rea-
sonable performance of our model, and the distortion for |V, |= 1.21 is out of our control
because the grid velocity almost reaches the particle velocities. It is concluded that the
Prandtl number fix enables us to handle the value of the air.

3 Application to flow around NACAOO012 aerofoil at
moderate Reynolds number

3.1 Aim and numerical setup
We conduct a simulation of flow around the NACA0012 aerofoil. We validate reproduc-
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ibility of our method from the viewpoint of capability for direct simulation of aerodynamic
sound. The statistic values on the surface of the aerofoil are compared with experimental

71 We validate the Reynolds number effect, separa-
13]

and numerical data by Miyazawa et al.
tion and reattachment, and the Mach number dependence around the aerofoil"

We define x - and z -directions as chordwise and spanwise, then set y -direction orthog-
onal to them. The C-type structural grid with uniform spanwise grid widths is prepared. The
parameters are written in table 2, where L. represents the chord length and the first/last

value of the number of grid corresponding to the circumferential/spanwise directions.

0.04 T ‘ ‘
— Miyazawa et al”!,CFD
x  present
0.03 1
0.02 1

Ce

0.01 ]
0 AM T

Y T T Y I I I | -0.01
0 0.5 1.0 0 0.2 0.4 0.6 0.8 1.0
x/L¢ x/Lc
Fig. 7 Distribution of instantaneous spanwise Fig. 8 Friction coefficient ¢; on
vorticity w, on the suction surface : the suction surface
w, € [ - 500, 500] where the uniform
velocity is used as the reference velocity
T T T 0.5 " T i
=3P — Miyazawa et al”! CFD | — Miyazawa et al” CFD
% o Miyazawa et a[.m ,exp. 041 o Miyazawa et al.m ,eXp.
e x  present + present
d g 0.3
Uc. \)‘;
=02
0.1} "
L . 1 0 i g ® b i
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
x/L¢ x/L¢

Fig. 9 Mean pressure coefficient ¢,

on the surface

Fig. 10 Intensity of pressure fluctuation

(¢,) rus ON the suction side

Results and discussion

The instantaneous z -direction vorticity field on the suction side is described in fig. 7,

3.2

where positive/negative values correspond to white/black. We can see the reverse-flow re-
gion near the leading edge 0.03L, < x < 0.09L, . The separation bubble which is considered
as a major sound source'”’ has a quasi-periodic structure along the spanwise direction. The

result suggests the 3D computation is necessary to capture sound source and to predict
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sound emission.

Fig. 8 shows friction coefficient ¢, obtained by eqs. (25a~c) 2! where ¢,/ ¢, represents
the normal/tangential direction of the surface. The separation and reattachment point of
our results agrees well with the previous numerical results'”’ , with finer grid resolution. It

can be stated that the FDLBM has a capability to treat viscous effect with computational ef-

ficiency.
P, ==[1 - d)j > - fee (25a)
¢ = P;,/ (;pUzj , (25b)
e, =(p -po)/(;pUz) (25¢)

The profile of pressure coefficient ¢, defined in egs.(25a~c) also agrees with the previ-
ous experimental and numerical results (fig. 9). In addition to importance of the average of
c, in aerodynamics, its variation is essential in aeroacoustics. It is reported that the pres-
sure fluctuation near the separation point intensifies as the Mach number decreases'". Our
method can reproduce the the Mach number dependence (fig. 10) ; in contrast, the previ-
ous computation overestimates the peak value due to the incompressible treatment.

Our results reproduce the position of the separation bubble near the leading edge and
the pressure fluctuation on the suction side in the previous experimental and numerical
ones. These results mean that the viscous and compressible effects in the flow are handled

correctly.

4  Conclusions

A new compressible model of the finite-difference lattice Boltzmann method is investi-
gated to utilize its advantage in direct simulation of aerodynamic sound. The new model re-
places a feasible compressible FDLBM in the 3D space with less than half number of distri-
bution functions of the conventional model, and releases us from the restrictions about the
specific heat ratio and the Prandtl number. Our model can handle the properties of the
compressible Navier-Stokes system. Furthermore, the Reynolds number and Mach number
effects in the flow around the NACA0012 aerofoil are reproduced. Our scheme is a hopeful
method for direct simulation of aerodynamic sound of low Mach turbulent flow in the 3D

space.
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