WANG Ping, TANG Shao-qiang. Numerical Study of Dynamic Phase Transitions in Shock Tube[J]. Applied Mathematics and Mechanics, 2007, 28(7): 824-832.
Citation: WANG Ping, TANG Shao-qiang. Numerical Study of Dynamic Phase Transitions in Shock Tube[J]. Applied Mathematics and Mechanics, 2007, 28(7): 824-832.

Numerical Study of Dynamic Phase Transitions in Shock Tube

  • Received Date: 2006-11-20
  • Rev Recd Date: 2007-04-23
  • Publish Date: 2007-07-15
  • Shock tube problem of a Van der Waals fluid with a relaxation model was investigated. In the limit of relaxation parameter tending towards zero, this model yields a specific Riemann solver. Relaxing and relaxed schemes were derived. For an incident shock in a fixed tube, numerical simulations show convergence toward the Riemann solution in one space dimension. Impact of parameters was studied theoretically and numerically. For certain initial shock profiles, nonclassical reflecting wave was observed. In two space dimensions, the effect of curved wave fronts was studied, and some interesting wave patterns were exposed.
  • loading
  • [1]
    Baker G A.Quantitative Theory of Critical Phenomena[M].San Diego:Academic Press,1990.
    [2]
    Hsieh Dinyu,TANG Shao-qiang,WANG Xiao-ping.On hydrodynamic instabilities, chaos and phase transition[J].Acta Mech Sinica,1996,12(1):1-14.
    [3]
    Shu C W. A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting[J].J Comp Phys,1992,2(100):424-429.
    [4]
    Hsieh Dinyu,WANG Xiao-ping.Phase transition in van der waals fluid[J].SIAM J Appl Math,1997,57(4):871-892. doi: 10.1137/S0036139995295165
    [5]
    Slemrod M.Admissibility criteria for propagating phase boundaries in a van der Waals fluid[J].Arch Rat Mech Anal,1983,4(81):301-315.
    [6]
    JIN Sin,XIN Zhou-ping.The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J].Comm Pure Appl Math,1995,48(3):235-278. doi: 10.1002/cpa.3160480303
    [7]
    Natalini R,TANG Shao-qiang. Discrete kinetic models for dynamic phase transitions[J].Comm Appl Nonlinear Anal,2000,7(2):1-32.
    [8]
    TANG Shao-qiang, WANG Ping. Pattern formation in dynamic phase transitions[J].Chin Phy Lett,2004,21(8):1566-1568. doi: 10.1088/0256-307X/21/8/043
    [9]
    TANG Shao-qiang,ZHAO Hui-jiang.Stability of Suliciu model for phase transitions[J].Comm Pure Appl Anal,2004,3(4):545-556. doi: 10.3934/cpaa.2004.3.545
    [10]
    王平,唐少强.松驰模型中液气共存平衡态[J].应用数学和力学,2005,26(6):707-713.
    [11]
    Fornberg B, Witham G B.A numerical and theoretical study of certain nonlinear wave phenomena[J].Philos trans Roy Soc London Ser A,1978,289:373-404. doi: 10.1098/rsta.1978.0064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2902) PDF downloads(621) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return