TAN Shu-jun, ZHONG Wan-xie. Numerical Solutions of LQ Control for Time-Varying Systems Via Symplectic Conservative Perturbation[J]. Applied Mathematics and Mechanics, 2007, 28(3): 253-262.
Citation: TAN Shu-jun, ZHONG Wan-xie. Numerical Solutions of LQ Control for Time-Varying Systems Via Symplectic Conservative Perturbation[J]. Applied Mathematics and Mechanics, 2007, 28(3): 253-262.

Numerical Solutions of LQ Control for Time-Varying Systems Via Symplectic Conservative Perturbation

  • Received Date: 2006-09-26
  • Rev Recd Date: 2007-01-07
  • Publish Date: 2007-03-15
  • Optimal control system of state space is a conservative system,whose approximate method should be symplectic conservation.Based on the precise integration method,an algorithm of symplectic conservative perturbation was presented.It gives a uniform way to solve the LQ control problems for linear time-varying systems accurately and efficiently,whose key points are solutions of differential Riccati equation and the state feedback equation with variable coefficient.The method is symplectic conservative and has a good numerical stability and high precision.Numerical examples demonstrate the effectiveness of the proposed method.
  • loading
  • [1]
    Anderson Brian D O,Moore John B.Optimal Control: Quadratic Methods[M].Englewood Cliffs,N J:Prentice Hall,1990.
    [2]
    Chen C T.Linear System Theory and Design[M].New York:CBS College,1984.
    [3]
    Chen W L,Shih Y P.Analysis and optimal control of time-varying linear systems via Walsh functions[J].Int J Control,1978,27(6):917-932. doi: 10.1080/00207177808922422
    [4]
    徐宁寿,郑兵.方块脉冲函数用于线性时变系统的分析和最优控制[J].自动化学报,1982,8(1):55-67.
    [5]
    古天龙,徐国华. 分段线性函数用于时变系统的最优控制[J].控制理论与应用,1989,6(4):102-108.
    [6]
    Hsiao C H,Wang W J.Optimal control of linear time-varying systems via Haar wavelets[J].Journal of Optimization Theory and Applications,1999,103(4):641-655. doi: 10.1023/A:1021740209084
    [7]
    钟万勰. 计算结构力学与最优控制[M].大连:大连理工大学出版社,1993.
    [8]
    钟万勰. 线性二次最优控制的精细积分[J]. 自动化学报,2002,27(2):166-173.
    [9]
    钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183.
    [10]
    钟万勰. 应用力学的辛数学方法[M].北京:高等教育出版社, 2006.
    [11]
    ZHONG Wan-xie.Duality System in Applied Mechanics and Optimal Control[M].New York: Kluwer Academic Publishers, 2004.
    [12]
    Choi Chiu H.Time-varying Riccati differential equation for numerical experiments[A].Proceedings of the 29th Conference on Decision and Control[C]. Honolulu, Hawaii:Dec. 1990, 930-940.
    [13]
    LU Ping. Closed-form control laws for linear time-varying systems[J].IEEE Transaction on Automatic Control,2000,45(3):537-542. doi: 10.1109/9.847739
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3315) PDF downloads(746) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return