YUAN Si, HE Xue-feng. Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1280-1291.
Citation: YUAN Si, HE Xue-feng. Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1280-1291.

Self-Adaptive Strategy for One-Dimensional Finite Element Method Based on EEP Method

  • Received Date: 2005-10-09
  • Rev Recd Date: 2006-08-10
  • Publish Date: 2006-11-15
  • Based on the newly-developed element energy projection(EEP)method for computation of super-convergent results in one-dimensional finite element method(FEM),the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation.As a result, a satisfactory FEM mesh can be obtained,and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance.Even though the error tolerance was not completely satisfied,one or two steps of further local refinements would be sufficient.This strategy has been found to be very simple,rapid,cheap and efficient.Taking the elliptical ordinary differential equation of the second order as the model problem,the fundamental idea, implementation strategy and detailed algorithm were described.Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
  • loading
  • [1]
    Babuska I,Rheinboldt W C.A posteriori error analysis of finite element method for one-dimensional problems[J].SIAM Journal on Numerical Analysis,1981,18(3):565—589. doi: 10.1137/0718036
    [2]
    Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery (SPR) and a posteriori error estimates,part 1: the recovery technique[J].Internat J Numer Methods Engrg,1992,33(7):1331—1364. doi: 10.1002/nme.1620330702
    [3]
    Zienkiewicz O C, Zhu J Z.The superconvergence patch recovery (SPR) and a posteriori error estimates,part 2: error estimates and adaptivity[J].Internat J Numer Methods Engrg,1992,33(7):1365—1382. doi: 10.1002/nme.1620330703
    [4]
    林群,朱起定.有限元的预处理和后处理理论[M].上海:上海科学技术出版社,1994.
    [5]
    陈传淼. 有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2002.
    [6]
    Ascher U, Christiansen J,Russell R D.Algorithm 569, COLSYS: Collocation software for boundary value ODEs[D2]. ACM Trans Math Software,1981,7(2):223—229.
    [7]
    YUAN Si.The Finite Element Method of Lines[M].Beijing,New York: Science Press, 1993.
    [8]
    袁驷,王枚,林永静,等. 有限元(线)法超收敛应力计算的新思路[J].工程力学(增刊). 长沙:全国结构工程大会,2002,112—118.
    [9]
    袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学,2004,21(2):1—9.
    [10]
    Strang G, Fix G.An Analysis of the Finite Element Method[M].London: Prentice-Hall, 1973.
    [11]
    Douglas J, Dupont T. Galerkin approximations for the two point boundary problems using continuous piecewise polynomial spaces[J].Numer Math,1974,22(2):99—109. doi: 10.1007/BF01436724
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2750) PDF downloads(632) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return