FANG Min, DING Xie-ping. Generalized Vector Variational-Type Inequalities in FC-Spaces[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1271-1279.
Citation: FANG Min, DING Xie-ping. Generalized Vector Variational-Type Inequalities in FC-Spaces[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1271-1279.

Generalized Vector Variational-Type Inequalities in FC-Spaces

  • Received Date: 2005-11-01
  • Rev Recd Date: 2006-08-06
  • Publish Date: 2006-11-15
  • A class of generalized vector variational-type inequality problems(in short,GVVTIP)are studied in FC-spaces,which include most of vector equilibrium problems,vector variational inequality problems,generalized vector equilibrium problems and generalized vector variational inequality problem as special cases.By using F-KKM theorem,some new existence results for GVVTIP are established in noncompact FC-space.As consequences,some recent known results in literature are obtained under much weaker assumption.
  • loading
  • [1]
    Giannessi F.Theorems of alternative, quadratic programs and complementary problems[A].In:Cottle R W,Giannessi F,Lions J L,Eds.Variational Inequalities and Complementarity Problems[C].New York:John Wiley Sons,1980,151—186.
    [2]
    Song W.Vector equilibrium problems with set-valued mappings[A].In:Giannessi F,Ed.Vector Variational Inequalities and Vector Equilibria[C].London:Kluwer Acad Pub,2000,403—422.
    [3]
    Lin L J,Park S.On some generalized quasi-equilibrium problem[J].J Math Anal Appl,1998,224[STBZ]. (2):167—181.
    [4]
    Ansari Q H,Yao J C.An existence result for the generalized vector equilibrium problem[J].Appl Math Lett,1999,12[STBZ]. (8):53—56.
    [5]
    Oettli W,Schlger D.Existence of equilibrium for g-monotone mappings[A].In:Takahashi W,Tanaka T,Eds.Nonlinear Analysis and Convex Analysis[C].Singapore:World Sci Pub,1999,26—33.
    [6]
    DING Xie-ping,Tarafdar E.Generalized vector variational-like inequalities with[WT5”BZ]. Cx-η-[WT5”B4]. pseudomontone set-valued mappings[A].In:Giannessi F,Ed.Vector Variational Inequalities and Vector Equilibria[C].London:Kluwer Acad Pub,2000,125—140.
    [7]
    DING Xie-ping.The generalized vector quasi-variational-like inequalities[J].Computers Math Appl,1999,37(6):57—67.
    [8]
    DING Xie-ping,Park J Y.Generalized vector equilibrium problems in generalized convex spaces[J].J Optim Theory Appl,2004,120[STBZ]. (2):327—353.
    [9]
    DING Xie-ping,Park J Y.Fixed points and generalized vector equilibrium problems in generalized convex spaces[J].Indian J Pure Appl Math,2003,34[STBZ]. (6):973—990.
    [10]
    DING Xie-ping.Generalized R-KKM type theorems in topological spaces and application[J].四川师范大学学报,2005,28[STBZ]. (5):505—513.
    [11]
    Ansari Q H,Siddiqi A H,Yao J C.Generalized vector variational-like inequalities and their scalarizations[A].In:Giannessi F,Ed.Vector Variational Inequalities and Vector Equlibria[C].London:Kluwer Acad Pub,2000,17—37.
    [12]
    DING Xie-ping,Tarafdar E.Generalized vector variational-like inequalities without monotonicity[A].In:Giannessi F,Ed.Vector Variational Inequalities and Vector Equilibria[C].London:Kluwer Acad Pub,2000,113—124.
    [13]
    Chang S S,Thompson H B,Yuan G X Z.Existence of solutions for generalized vector variational-like inequalities[A].In:Giannessi F, Ed.Vector Variational Inequalities and Vector Equilibria[C].London:Kluwer Acad Pub,2000,39—53.
    [14]
    Luo Q.Generalized vector variational-like inequalities[A].In:Giannessi F,Ed.Vector Variational Inequalities and Vector Equilibria[C].London:Kluwer Acad Pub,2000,363—369.
    [15]
    Giannessi F.Vector Variational Inequalities and Vector Equilibria[M].London:Kluwer Acad Pub,2000.
    [16]
    Lee B S,Lee S J.Vector variational-type inequalities for set-valued mappings[J].Appl Math Lett,2000,13(3):57—62.
    [17]
    DING Xie-ping.Maximal elements theorems in product FC-space and generalized games[J].J Math Anal Appl,2005,305(1):29—42. doi: 10.1016/j.jmaa.2004.10.060
    [18]
    DING Xie-ping.Generalized G-KKM theorems in generalized convex space and their applications[J].J Math Anal Appl,2002,266[STBZ]. (1):21—37.
    [19]
    Deng L,Xia X.Generalized R-KKM theorems in topological space and their application[J].J Math Anal Appl,2003,285[STBZ]. (2):679—690.
    [20]
    Aubin J P,Ekeland I.Applied Nonlinear Analysis[M].New York:John Wiley Sons,1984.
    [21]
    Klein E,Thompson A C.Theory of Correspondences[M].New York:John Wiley Sons,1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2320) PDF downloads(737) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return