SHENG Qi-hu, WU De-ming, ZHANG Liang. Aerodynamic Forces Acting on an Albatross Flying Above Sea-Waves[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1114-1120.
Citation:
SHENG Qi-hu, WU De-ming, ZHANG Liang. Aerodynamic Forces Acting on an Albatross Flying Above Sea-Waves[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1114-1120.
SHENG Qi-hu, WU De-ming, ZHANG Liang. Aerodynamic Forces Acting on an Albatross Flying Above Sea-Waves[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1114-1120.
Citation:
SHENG Qi-hu, WU De-ming, ZHANG Liang. Aerodynamic Forces Acting on an Albatross Flying Above Sea-Waves[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1114-1120.
Aerodynamic Forces Acting on an Albatross Flying Above Sea-Waves
Received Date: 2003-08-10
Rev Recd Date:
2005-04-05
Publish Date:
2005-09-15
Abstract
Numerical investigation on the dynamic mechanism has been made for an albatross to fly effectively in the region near sea surface.Emphasizing on the effect of the sea wave,the albatross is simplified as a two-dimensional airfoil and the panel method based on the potential flow theory is employed to calculate the wave effect on the aerodynamic forces.The numerical results have been presented for the states of:1)flying at different constant speeds with constant heights above sea level; 2)flying at different constant speeds with the combined oscillations of pitching and free heaving.The study on the cases shows that the albatross.flight efficiency depends on not only the speed and height of flight but also the wave amplitude and the wavelength.The albatross benefits by wave effect to get thrust,so as to reduce the resistance in the circumstances of rough sea.
References
[1]
Wood C J.The flight of albatross (a computer simulation)[J].the Ibis,1973,115(2):244—256.
[2]
Lamb H.Hydrodynamics[M].6th Ed.New York: Cambridge University Press,1932,65—70.
[3]
Templin R J.The spectrum of animal fight: insects to pterosaurs[J].Progress in Aerospace Sciences,2000,36(1):393—436.
doi: 10.1016/S0376-0421(00)00007-5
[4]
Robinson A,Laurmann J A.Wing Theory[M].New York: Cambridge University Press,1956,20—22.
[5]
Shyy W,Berg M,Ljungqvist D.Flapping and flexible wings for biological and micro air vehicles[J].Progress in Aerospace Sciences,1999,35(1):455—505.
doi: 10.1016/S0376-0421(98)00016-5
[6]
BhattacharyyaT.Dynamics of Marine Vehicles[M].New York: John Wiley & Sons,1978,110—118.
Relative Articles
[1] WANG Qijun, ZHANG Dechun, LI Peng, WANG Jun. The Panel Method for Rigid Section Group Added Mass Coefficients and Its Application to Fuel Assemblies [J]. Applied Mathematics and Mechanics, 2023, 44(2): 133-140. doi: 10.21656/1000-0887.430292
[2] WANG Qiang, XU Tao, YAO Yongtao. Numerical Study on Hypersonic Flow and Aerodynamic Heating [J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346
[3] LUO Xiao, ZHANG Xinyan, ZHANG Jun, LI Lizhou, YANG Minglei, YUAN Meini. A Reduced-Order Model Method for Blade Vibration Due to Upstream Wake Based on the Harmonic Balance Method [J]. Applied Mathematics and Mechanics, 2018, 39(8): 892-899. doi: 10.21656/1000-0887.380294
[4] TENG Fei, LUO Zhen-dong. A Reduced-Order Stabilized CNFVE Extrapolating Model for Non-Stationary Stokes Equations [J]. Applied Mathematics and Mechanics, 2014, 35(9): 986-1001. doi: 10.3879/j.issn.1000-0887.2014.09.005
[5] XU Yong, DONG Wen-cai. Hydrodynamic Interactions Between Multiple Ships Advancing Parallel in Close Proximity in Waves [J]. Applied Mathematics and Mechanics, 2014, 35(4): 389-400. doi: 10.3879/j.issn.1000-0887.2014.04.005
[6] CHEN Zhi-min, W.G.Price. Dissipative Free-Surface Solver for the Potential Flow Around a Hydrofoil Distributed With Doublets [J]. Applied Mathematics and Mechanics, 2012, 33(11): 1366-1378. doi: 10.3879/j.issn.1000-0887.2012.11.011
[7] QIAN Qin-jian, SUN De-jun. Numerical Method for Optimum Motion of Undulatory Swimming Plate in Fluid Flow [J]. Applied Mathematics and Mechanics, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008
[8] CHEN Yu-mei, XIE Xiao-ping. Streamline Diffusion Nonconforming Finite Element Method for the Time-Dependent Linearized Navier-Stokes Equations [J]. Applied Mathematics and Mechanics, 2010, 31(7): 822-834. doi: 10.3879/j.issn.1000-0887.2010.07.007
[9] J. C. Umavathi, I. C. Liu, J. Prathap Kumar, D. Shaik Meera. Unsteady Flow and Heat Transfer of Porous Media Sandwiched Between Viscous Fluids [J]. Applied Mathematics and Mechanics, 2010, 31(12): 1415-1434. doi: 10.3879/j.issn.1000-0887.2010.12.003
[10] LIU Qing-fang, HOU Yan-ren. Local and Parallel Finite Element Algorithms for the Time-Dependent Convection-Diffusion Equations [J]. Applied Mathematics and Mechanics, 2009, 30(6): 733-740. doi: 10.3879/j.issn.1000-0887.2009.06.013
[11] CHEN Hao, BAO Lin. Mechanism of Unsteady Aerodynamic Heating With a Sudden Change in Surface Temperature [J]. Applied Mathematics and Mechanics, 2009, 30(2): 160-170.
[12] WU Jiang-hao, SUN Mao. Control of Flight Forces and Moments by the Flapping Wings of a Model Bumble-bee [J]. Applied Mathematics and Mechanics, 2008, 29(3): 301-315.
[13] LIU Xin-jian, YUAN Tian-bao. Effects of Unsteady Deformation of a Flapping Wing on Its Aerodynamic Forces [J]. Applied Mathematics and Mechanics, 2008, 29(6): 663-675.
[14] Gao Zhenghong. Research on the Hysteresis Properties of Unsteady Aerodynamics About the Oscillating Wings [J]. Applied Mathematics and Mechanics, 1999, 20(8): 835-846.
[15] Shui Xiaoping, Zhang Yongfa. A Method for Solving the Dynamics of Multibody Systems With Rheonomic and Nonholonomic Constraints [J]. Applied Mathematics and Mechanics, 1996, 17(6): 551-557.
[16] Gao Zheng-hong. Unsteady Transonic Aerodynamic Loadings on the Airfoil Caused by Heaving, Pitching Oscillations and Control Surface [J]. Applied Mathematics and Mechanics, 1992, 13(9): 775-783.
[17] Zhang Shu-shun, Shang Da-zhang. The Theorem of the Stability of Nonlinear Nonautonomous Systems under the Frequently-Acting Perturbation——Liapunov’s Indirect Method [J]. Applied Mathematics and Mechanics, 1991, 12(7): 671-678.
[18] Zhou Zhe-wei. The Linear Stability of PSane Poiseuille Flow under Unsteady Distortion [J]. Applied Mathematics and Mechanics, 1991, 12(6): 509-514.
[19] Wang Zhong-qi, Kang Shun. Simplification of the Expansions of Viscous Terms in Basic Aerodynamic Equations in Non-Orthogonal Curvilinear Coordinate System [J]. Applied Mathematics and Mechanics, 1987, 8(1): 87-94.
[20] Zhang Shu-shun. The Theorem of the Stability of Linear Nonautonomous ystems under the Frequently-Acting Perturbation [J]. Applied Mathematics and Mechanics, 1986, 7(2): 169-171.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.1 % FULLTEXT : 17.1 % META : 82.3 % META : 82.3 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 9.0 % 其他 : 9.0 % China : 1.0 % China : 1.0 % Singapore : 0.3 % Singapore : 0.3 % 上海 : 0.9 % 上海 : 0.9 % 北京 : 1.2 % 北京 : 1.2 % 十堰 : 0.1 % 十堰 : 0.1 % 南宁 : 0.1 % 南宁 : 0.1 % 厦门 : 0.1 % 厦门 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 大庆 : 0.1 % 大庆 : 0.1 % 天津 : 0.2 % 天津 : 0.2 % 宿迁 : 0.1 % 宿迁 : 0.1 % 山景城 : 0.2 % 山景城 : 0.2 % 崇左 : 0.1 % 崇左 : 0.1 % 常州 : 0.2 % 常州 : 0.2 % 张家口 : 2.9 % 张家口 : 2.9 % 扬州 : 0.3 % 扬州 : 0.3 % 新乡 : 0.2 % 新乡 : 0.2 % 昆明 : 0.1 % 昆明 : 0.1 % 武汉 : 0.1 % 武汉 : 0.1 % 沈阳 : 0.1 % 沈阳 : 0.1 % 洛杉矶 : 0.1 % 洛杉矶 : 0.1 % 洛阳 : 0.1 % 洛阳 : 0.1 % 深圳 : 0.2 % 深圳 : 0.2 % 温州 : 0.1 % 温州 : 0.1 % 漯河 : 0.7 % 漯河 : 0.7 % 漳州 : 0.1 % 漳州 : 0.1 % 玉林 : 0.1 % 玉林 : 0.1 % 石家庄 : 0.4 % 石家庄 : 0.4 % 芒廷维尤 : 6.2 % 芒廷维尤 : 6.2 % 苏州 : 0.4 % 苏州 : 0.4 % 西宁 : 72.8 % 西宁 : 72.8 % 西安 : 0.1 % 西安 : 0.1 % 邯郸 : 0.1 % 邯郸 : 0.1 % 郑州 : 0.6 % 郑州 : 0.6 % 阳泉 : 0.1 % 阳泉 : 0.1 % 青岛 : 0.2 % 青岛 : 0.2 % 其他 China Singapore 上海 北京 十堰 南宁 厦门 哥伦布 大庆 天津 宿迁 山景城 崇左 常州 张家口 扬州 新乡 昆明 武汉 沈阳 洛杉矶 洛阳 深圳 温州 漯河 漳州 玉林 石家庄 芒廷维尤 苏州 西宁 西安 邯郸 郑州 阳泉 青岛