ZHAO Guang-ming, SONG Shun-cheng. New Algorithm of Coupling Element-Free Galerkin With Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 899-904.
Citation: ZHAO Guang-ming, SONG Shun-cheng. New Algorithm of Coupling Element-Free Galerkin With Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(8): 899-904.

New Algorithm of Coupling Element-Free Galerkin With Finite Element Method

  • Received Date: 2004-01-10
  • Rev Recd Date: 2005-05-08
  • Publish Date: 2005-08-15
  • Through the construction of a new ramp function, the element-free Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective.
  • loading
  • [1]
    Nayroles B,Touzot G,Villon P.Generalizing the finite element method: diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10(5):307—318. doi: 10.1007/BF00364252
    [2]
    Belytschko T,Lu Y Y,Gu L.Element-free Galerkin method[J].Internat J Nunmer Methods Engrg,1994,37(2):229—256. doi: 10.1002/nme.1620370205
    [3]
    Belytschko T,Lu Y Y,Gu L,et al.Element-free Galerkin methods for static and dynamic fracture[J].Internat J Solids Structure,1995,32(17/18):2547—2570. doi: 10.1016/0020-7683(94)00282-2
    [4]
    Wang Y H,Li W D.Parametric study for an efficient meshless method in vibration analysis[J].Journal of Sound and Vibration,2002,255(2):261—279. doi: 10.1006/jsvi.2001.4154
    [5]
    Mukherjee S,YU Xie.On boundary conditions in the element free Galerkin method[J].Computational Mechanics,1997,19(4):264—270. doi: 10.1007/s004660050175
    [6]
    Zhu T,Atluri.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in element free Galerkin method[J].Computational Mechanics,1998,21(3):211—221. doi: 10.1007/s004660050296
    [7]
    Lu Y Y,Belytschko T,Gu L. A new implementation of the element free Galerkin method[J].Comput Methods Appl Mech Engrg,1994,113(3/4):397—414. doi: 10.1016/0045-7825(94)90056-6
    [8]
    Krongauz Y,Belytschko T.Enforcement of essential boundary conditions in meshless approximation using finite element[J].Comput Methods Appl Mech Engrg,1996,131(1/2):133—145. doi: 10.1016/0045-7825(95)00954-X
    [9]
    Belytschko T,Organ D Y,Krougauz Y.A Coupled finite element-element free Galerkin methods[J].Computational Mechanics,1995,17(3):186—195. doi: 10.1007/BF00364080
    [10]
    Hegan D.Element free Galerkin method in combination with finite element approaches[J].Comput Methods Appl Mech Engrg,1996,135(1/2):143—166. doi: 10.1016/0045-7825(96)00994-2
    [11]
    王卫东,赵国群,栾贻国.无网格方法中本质边界条件的处理[J].力学季刊,2002,23(4):521—527.
    [12]
    Belytschko T.Meshless method: an overview and recent developments[J].Comput Methods Appl Mech Engrg,1996,139(1/4):3—47. doi: 10.1016/S0045-7825(96)01078-X
    [13]
    Dolbow T,Belytschko T.Volumetric locking in the element free Galerkin method[J].Internat J Numer Methods Engrg,1999,46(6):925—942. doi: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
    [14]
    Atkinand R J,Fox N.An Introduction to the Theory of Elasticity[M].London:Longman, 1980.
    [15]
    Chung H J,Belytschko T.An error estimate in the EFG method[J].Computational Mechanics,1998,21(2):91—100. doi: 10.1007/s004660050286
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2677) PDF downloads(776) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return