Citation: | ZHAO Bao-sheng, WANG Min-zhong. Equivalence of the Refined Theory and the Decomposed Theorem of an Elastic Plate[J]. Applied Mathematics and Mechanics, 2005, 26(4): 447-455. |
[1] |
CHENG Shun.Elasticity theory of plates and a refined theory[J].Journal of Application Mechanics,1979,46(2):644—650.
|
[2] |
Lur'e A I.Three-Dimensional Problems in the Theory of Elasticity[M].New York: Interscience, 1964,148—166.
|
[3] |
王飞跃.横观各向同性板的弹性精化理论[J].上海力学,1985,6(2):10—21.
|
[4] |
Gregory R D.The general form of the three-dimensional elastic field inside an isotropic plate with free faces[J].Journal of Elasticiy,1992,28(1):1—28. doi: 10.1007/BF00042522
|
[5] |
Gregory R D.The semi-infinite strip x≥0,-1≤y≤1;completeness of the Papkovich-Fadle eigenfunctions when xx(0,y),yy(0,y) are prescribed[J].Journal of Elasticity,1980,10(1):57—80. doi: 10.1007/BF00043135
|
[6] |
Gregory R D.The traction boundary value problems for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions[J].Journal of Elasticity,1980,10(3):295—327. doi: 10.1007/BF00127452
|
[7] |
WANG Min-zhong,ZHAO Bao-sheng. The decomposed form of the three-dimensional elastic plate[J].Acta Mechanica,2003,166(3): 207—216. doi: 10.1007/s00707-003-0029-2
|
[8] |
赵宝生,王敏中. 横观各向同性板的分解理论[J].力学学报,2004,36(1):57—63.
|
[9] |
WANG Min-zhong,WANG Wei.Completeness and nonuniqueness of general solutions of transversely isotropic elasticity[J].International Journal of Solids and Structures,1995,32(3/4):501—513. doi: 10.1016/0020-7683(94)00114-C
|
[10] |
WANG Wei,WANG Min-zhong. Constructivity and completeness of the general solutions in elasto~dynamics[J].Acta Mechanica,1992,91(1):209—214. doi: 10.1007/BF01194110
|
[11] |
WANG Wei,SHI Ming-xing.Thick plate theory based on general solutions of elasticity[J].Acta Mechanica,1997,123(1):27—36. doi: 10.1007/BF01178398
|