Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.
Citation:
Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.
Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.
Citation:
Chen Guang-zu. Determining the Stress Intensity Factor by Using the Principle of Minimum Potential Energy[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1121-1129.
Expressing the total potential energy of the system of a cracked body П by Williams' infinite series solution of stress and displacement components containing coefficients An(n = 1,2,...), we obtain a set of simultaneous linear equations of unknown coefficients An by using the principle of minimum potential energy. When the set of equations is solved, the stress intensity factor K1 can be easily determined. It is equal to √2πaA1 Take a sample plate as an example. A single-edgc-cracked plate under tension, with the ratio of crack length to the width of the plate being 0.5 and the ratio of half plate height to the width of the plate being 2.0 and 2. 5, has been calculated. Only 20-30 coefficients are taken, and the errors in stress intensity factors are within 5%.
Williams,M.L.,On the stress distribution at the base of a stationary crack,J.Appl.Mech.,24(1957).
[3]
Cross,B.and J.E.Srawley,Stress-intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function,NASA,TN,D-2395(1964).
[4]
Keer,L.M.and J.M.Freedman,Tensile strip with edge crack:Int.J.Engng.Sci.,11(1973).