WANG Zheng-yu, SHEN Zu-he. Kantorovich Theorem for Variational Inequalities[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1182-1188.
Citation:
WANG Zheng-yu, SHEN Zu-he. Kantorovich Theorem for Variational Inequalities[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1182-1188.
WANG Zheng-yu, SHEN Zu-he. Kantorovich Theorem for Variational Inequalities[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1182-1188.
Citation:
WANG Zheng-yu, SHEN Zu-he. Kantorovich Theorem for Variational Inequalities[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1182-1188.
Kantorovich Theorem for Variational Inequalities
Received Date: 2002-10-01
Rev Recd Date:
2004-05-06
Publish Date:
2004-11-15
Abstract
Kantorovich theorem was extended to variational inequalities by which the convergence of Newton iteration, the existence and uniqueness of the solution of the problem can be tested via computational conditions at the initial point.
References
[1]
Eaves B C.A locally quadratically convergent algorithm for computing stationary point[R]. Department of Operations Research,Stanford University,1978.
[2]
Josephy N H.Newton's method for generalized equations[R]. Mathematics Research Center,University of Wisconsin,1979.
[3]
Harker P T,Pang J S.Finite-dimensional variational inequalities and non-linear complementarity problems:a survey of theory,algorithms and applications[J].Mathematical Programming,1990,48(2):161—220.
doi: 10.1007/BF01582255
[4]
Robinson S M.Generalized equations and their solutions[J].Mathematical Programming Study,1979,10(1):128—141.
doi: 10.1007/BFb0120850
[5]
Robinson S M.Strongly regular generalized equations[J].Mathematics of Operations Research,1980,5(1):43—62.
doi: 10.1287/moor.5.1.43
[6]
Kantorovich L V.Functional analysis and applied mathematics[J].Uspehi Mat Nauk,1948,3(6):89—185.
[7]
Ortega J M,Rheinboldt W C.Iterative Solutions of Nonlinear Equations in Several Variables[M].New York:Academic Press,1970.
[8]
Stampacchia G.Variational inequalities[A].In:Stampacchia G Ed.Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute[C].Venice:Edizioni Oderisi,Gubbio,1968,102—192.
[9]
Rall L B.Computational Solution of Nonlinear Operator Equations[M].New York:Wiely,1969.
[10]
Alefeld G E,Herzberger J.Introduction to Interval Computations[M].New York and London:Academic Press,1983.
Relative Articles
[1] WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A Double Projection Algorithm for Solving Non-Monotone Variational Inequalities [J]. Applied Mathematics and Mechanics, 2022, 43(8): 927-934. doi: 10.21656/1000-0887.420414
[2] YANG Jun. A Golden Ratio Algorithm for Solving Nonmonotone Variational Inequalities [J]. Applied Mathematics and Mechanics, 2021, 42(7): 764-770. doi: 10.21656/1000-0887.410359
[3] RAO Ling. Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems [J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109
[4] HAO Yan. Some Results on Variational Inclusion Problems and Fixed Point Problems With Applications [J]. Applied Mathematics and Mechanics, 2009, 30(12): 1493-1500. doi: 10.3879/j.issn.1000-0887.2009.12.010
[5] HU Yan-hong, SONG Wen. Generalized Gap Functions and Error Bounds for Generalized Variational Inequalities [J]. Applied Mathematics and Mechanics, 2009, 30(3): 301-308.
[6] LIU Ying. Strong Convergence Theorems for Relatively Nonexpansive Mappings and Inverse-Strongly-Monotone Mappings in a Banach Space [J]. Applied Mathematics and Mechanics, 2009, 30(7): 865-872. doi: 10.3879/j.issn.1000-0887.2009.07.011
[7] ZHANG Shi-sheng, RAO Ruo-feng, HUANG Jia-lin. Strong Convergence Theorem for a Generalized Equilibrium Problem and k-Strict Pseudocontraction in Hilbert Spaces [J]. Applied Mathematics and Mechanics, 2009, 30(6): 638-647. doi: 10.3879/j.issn.1000-0887.2009.06.002
[8] DING Xie-ping, LIN Yen-cherng, YAO Jen-chih. Three-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities [J]. Applied Mathematics and Mechanics, 2007, 28(8): 921-928.
[9] ZHENG Hong, LIU De-fu, LEE C. F., THAM L. G.. New Variational Inequality Formulation for Seepage Problems With Free Surfaces [J]. Applied Mathematics and Mechanics, 2005, 26(3): 363-371.
[10] ZHANG Shi-sheng. Multi-Valued Quasi Variational Inclusions in Banach Spaces [J]. Applied Mathematics and Mechanics, 2004, 25(6): 572-580.
[11] GUO Xing-ming, ZHOU Shi-xing. Optimal Control of Parabolic Variational Inequalities With Stat Constraint [J]. Applied Mathematics and Mechanics, 2003, 24(7): 669-674.
[12] Gao Yang. Contact Problems and Dual Variational Inequality of 2-D Elastoplastic Beam Theory [J]. Applied Mathematics and Mechanics, 1996, 17(10): 895-908.
[13] Zhang Shi-sheng, Wu Xian. Topologicai Version of Section Theorems with Applications [J]. Applied Mathematics and Mechanics, 1995, 16(2): 123-131.
[14] Zheng Tie-sheng, Li Li, Xu Qing-yu. An Iterative Method for the Discrete Problems of a Class of Elliptical Variational Inequalities [J]. Applied Mathematics and Mechanics, 1995, 16(4): 329-335.
[15] Zhang Shi-sheng, Zhang Yin. Section Theorems, Coincidence Theorems and Intersection Theorems on H-Spaces with Applications [J]. Applied Mathematics and Mechanics, 1993, 14(9): 763-774.
[16] Guo Xiao-ming, She Ying-he. The Variational Inequality Formulation for the Deformation Theory in Plasticity and Its Non-Iterative Solution [J]. Applied Mathematics and Mechanics, 1993, 14(12): 1105-1113.
[17] Wang Xiang-dong, Liang Xi-ting. The Holder Continuity for the Gradient of Solutions to One-Sided Obstacle Problems [J]. Applied Mathematics and Mechanics, 1992, 13(9): 811-820.
[18] Yan Xin-li, Li Bing-you. Generalized Variational Inequalities and Minimax Theorems [J]. Applied Mathematics and Mechanics, 1991, 12(9): 807-812.
[19] Zhang Shi-sheng, Xiang Shu-wen. On the Existence and Uniqueness of Solutions for a Class of Variational Inequalities with Applications to the Signorini Problem in Mechanics [J]. Applied Mathematics and Mechanics, 1991, 12(5): 401-407.
[20] Sha De-song, Sun Huan-chun, Xu Shou-ze. Formulation of Boundary Element-Linear Complementary Equation for the Ffictional Elastic Contact Problems [J]. Applied Mathematics and Mechanics, 1990, 11(12): 1035-1041.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 13.8 % FULLTEXT : 13.8 % META : 85.5 % META : 85.5 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.3 % 其他 : 7.3 % China : 1.0 % China : 1.0 % Singapore : 0.2 % Singapore : 0.2 % 三门峡 : 0.5 % 三门峡 : 0.5 % 上海 : 0.3 % 上海 : 0.3 % 丽水 : 0.1 % 丽水 : 0.1 % 北京 : 1.4 % 北京 : 1.4 % 南京 : 0.3 % 南京 : 0.3 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.1 % 台州 : 0.1 % 呼和浩特 : 0.2 % 呼和浩特 : 0.2 % 哈密 : 0.1 % 哈密 : 0.1 % 哈尔滨 : 0.2 % 哈尔滨 : 0.2 % 哥伦布 : 0.2 % 哥伦布 : 0.2 % 大兴安岭地区 : 0.1 % 大兴安岭地区 : 0.1 % 天津 : 0.2 % 天津 : 0.2 % 太原 : 0.1 % 太原 : 0.1 % 广州 : 0.1 % 广州 : 0.1 % 张家口 : 2.3 % 张家口 : 2.3 % 新乡 : 0.1 % 新乡 : 0.1 % 昆明 : 0.2 % 昆明 : 0.2 % 杭州 : 0.2 % 杭州 : 0.2 % 武汉 : 0.3 % 武汉 : 0.3 % 沈阳 : 0.1 % 沈阳 : 0.1 % 洛杉矶 : 0.3 % 洛杉矶 : 0.3 % 深圳 : 0.4 % 深圳 : 0.4 % 漯河 : 0.1 % 漯河 : 0.1 % 盘锦 : 0.2 % 盘锦 : 0.2 % 聊城 : 0.1 % 聊城 : 0.1 % 芒廷维尤 : 5.8 % 芒廷维尤 : 5.8 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 荆门 : 0.1 % 荆门 : 0.1 % 衡水 : 0.1 % 衡水 : 0.1 % 西宁 : 77.1 % 西宁 : 77.1 % 西安 : 0.1 % 西安 : 0.1 % 长沙 : 0.1 % 长沙 : 0.1 % 其他 China Singapore 三门峡 上海 丽水 北京 南京 南宁 台州 呼和浩特 哈密 哈尔滨 哥伦布 大兴安岭地区 天津 太原 广州 张家口 新乡 昆明 杭州 武汉 沈阳 洛杉矶 深圳 漯河 盘锦 聊城 芒廷维尤 芝加哥 苏州 荆门 衡水 西宁 西安 长沙