Zhang Hong-qing, Wang Ming. On the Compactness of Quasi-Conforming Element Spaces and the Convergence of Quasi-Conforming Element Method[J]. Applied Mathematics and Mechanics, 1986, 7(5): 409-423.
Citation: Zhang Hong-qing, Wang Ming. On the Compactness of Quasi-Conforming Element Spaces and the Convergence of Quasi-Conforming Element Method[J]. Applied Mathematics and Mechanics, 1986, 7(5): 409-423.

On the Compactness of Quasi-Conforming Element Spaces and the Convergence of Quasi-Conforming Element Method

  • Received Date: 1985-03-05
  • Publish Date: 1986-05-15
  • In this paper,the compactness of quasi-conforming clement spices and the convergence of quasi-conforming element method are discussed.The well-known rellich compactness theorem is generalized to the sequences of quasi-conforming element spaces with certain properties,and the generalized poincare inequality,the generalized Friedrichs inequality and the generalzed inequality of Poincare-Friedrichs are proved true for them.The error estimates are also given.It is shown that the quasi-conforming element method is convergent if the quasi-conforming element spaces have the approximability and the strong continuity,and satisfy the rank condition of element and pass test IPT.As practical examples,6-parameter,9-parameter,12-parameter,15-parameter,18-parameter and 21-parameter quasi-conforming elements are shown to be convergent,and tlieir.L2,2(Ω)-errors are O(hτ)、O(hτ)、O(hτ2)、O(hτ2)、O(hτ3)and O(hτ4)respectively.
  • [1]
    张鸿庆、王鸣,多套函数育限元逼近与拟协调板元,应用数学与力学,6,1(1985),41-52.
    [2]
    Zhang Hongqing,Wang Ming,Finite element approximations with multiple sets of functions and quasi-conforming elements,第五次国际双微会议(DD5)论文集,北京(1984).
    [3]
    唐立民、陈万言、刘迎曦,有限元分析中的拟协调元,大连工学院学报,19,2(1980)16-35.
    [4]
    陈万吉、刘迎曦、唐立民,拟协调元列式,大连工学院学学报,19,2(1980).
    [5]
    蒋和洋,用拟协调元方法推导高精度-二角形板弯曲单元,大连上学院学报,20,增刊2(1981)21-28.
    [6]
    Stummel,F.,The generalized patch test,SIAM J.Num.Anal.16(1971).449-471.
    [7]
    冯康,沦间断有限元的理论,计算数学,1,4(1979)378-385.
    [8]
    Stummel,F.,Basic compactness properties of nonconforming and hybrid finite element spaces,RAIRO,Anahse,Sumeriqe,Numerieal Analresis,4,1(1980),81-115.
    [9]
    Ciarlet,P,C.,The Finite Element Method for Elliptic Problems,North-Holland,Amsterdam,New York,Oxford(1978).
    [10]
    吉田耕作,《泛函分析》(吴元恺等译),人民教育出版社(l980)
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.5 %FULLTEXT: 18.5 %META: 80.8 %META: 80.8 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %China: 0.3 %China: 0.3 %Singapore: 0.5 %Singapore: 0.5 %上海: 0.3 %上海: 0.3 %北京: 1.7 %北京: 1.7 %南京: 1.6 %南京: 1.6 %台州: 0.3 %台州: 0.3 %哥伦布: 0.2 %哥伦布: 0.2 %山景城: 0.5 %山景城: 0.5 %广州: 0.2 %广州: 0.2 %张家口: 3.1 %张家口: 3.1 %杭州: 0.5 %杭州: 0.5 %洛杉矶: 0.5 %洛杉矶: 0.5 %深圳: 0.2 %深圳: 0.2 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 11.5 %芒廷维尤: 11.5 %苏州: 0.2 %苏州: 0.2 %西宁: 73.0 %西宁: 73.0 %西安: 0.2 %西安: 0.2 %其他ChinaSingapore上海北京南京台州哥伦布山景城广州张家口杭州洛杉矶深圳石家庄芒廷维尤苏州西宁西安

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1773) PDF downloads(436) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return