HUANG Jia-yin. Uniformly Valid Asymptotic Solutions of the Nonlinear Unsymmetrical Bending for Orthotropic Rectangular Thin Plate of Four Clamped Edges With Variable Thickness[J]. Applied Mathematics and Mechanics, 2004, 25(7): 745-754.
Citation: HUANG Jia-yin. Uniformly Valid Asymptotic Solutions of the Nonlinear Unsymmetrical Bending for Orthotropic Rectangular Thin Plate of Four Clamped Edges With Variable Thickness[J]. Applied Mathematics and Mechanics, 2004, 25(7): 745-754.

Uniformly Valid Asymptotic Solutions of the Nonlinear Unsymmetrical Bending for Orthotropic Rectangular Thin Plate of Four Clamped Edges With Variable Thickness

  • Received Date: 2002-05-25
  • Rev Recd Date: 2004-03-28
  • Publish Date: 2004-07-15
  • By using "the method of modified two-variable","the method of mixing perturbation" and introducing four small parameters,the problem of the non-linear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of N th-order for eqsilon 1 and M th-order for epsilon 2 of the deflection functions and stress function are obtained.
  • loading
  • [1]
    江福汝.关于边界层方法[J].应用数学和力学,1981,2(5):461—473.
    [2]
    江福汝.关于环形和圆形薄板在各种支承条件下的非对称弯曲问题(Ⅰ)[J].应用数学和力学,1982,3(5):629—640.
    [3]
    江福汝.关于环形和圆形薄板在各种支承条件下的非对称弯曲问题(Ⅱ)[J].应用数学和力学,1984,5(2):191—203.
    [4]
    秦圣立,黄家寅.圆柱型正交各向异性圆形薄板的非线性非对称弯曲问题(Ⅰ)[J].应用数学和力学,1994,15(8):741—757.
    [5]
    黄家寅,秦圣立,夏云杰,等.圆柱型正交各向异性圆形薄板的非线性非对称弯曲问题(Ⅱ)[J].应用数学和力学,1995,16(11):1003—1016.
    [6]
    黄家寅、秦圣立.四边固定正交各向异性矩形板的非线性非对称弯曲问题[J].应用数学和力学,1996,17(3):213—238.
    [7]
    秦圣立、张爱淑,关于具有初始挠度的圆形薄板的跳跃问题[J].应用数学和力学,1987,8(5):433—443.
    [8]
    黄家寅.变厚度正交各向异性非线性非对称弯曲问题的本构方程[J].应用数学和力学,2004,25(7):741—744.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2708) PDF downloads(512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return