Citation: | Lin Ping, Su Yu-cheng. Numerical Solution of Quasilinear Singularly Perturbed Ordinary Differential Equation without Turning Points[J]. Applied Mathematics and Mechanics, 1989, 10(11): 955-959. |
[1] |
Osher,S.,Nonlinear singular perturbation problems and one-sided difference schemes,SIAM J.Numer.Anal.,18,1(1981),129-144.
|
[2] |
Niijima,K.,On a difference scheme of exponential type for a nonlinear singular perturbation problem,Numer.Math.,46(1985),521-539.
|
[3] |
Niijima,K.,An error analysis for a difference scheme of exponential type applied to a nonlinear singular perturbation problem without turning points,J.Conip.Appl.Math.,15(1986),93-101.
|
[4] |
Lorenz,J.,Combinations of initial and boundary value method for a class of singular perturbation problem,Numerical Analysis of Singular Perturbation Problem(eds.Hemker/Miller)(1979),296-315.
|
[5] |
林平,非线性二阶奇异摄动常微分方程的数值解(待发表).
|
[6] |
Kadalbajoo,M.K.and Y.N.,Reddy,Initial-value technique for a class of nonlinear singular perturbation problems,J.Optim.Theory and Appls.,53,3(1987),395-406.
|
[7] |
Sattinger,D.H.,Monotone methods in nonlinear elliptic and parabolic boundary value problems,Indiana Univ.Math.J.,21,11(1972),979-1000.
|
[8] |
Howes,F.A.,Singular perturbations and differential inequalities.Memoirs of the AMS.5(1976),1-75.
|
[9] |
Doolan,E.P.,J.J.H.Miller and W.H.A.Schilders,Uniform Numerical Methods for Problems with Initial and Boundary Layers,Boole Press.Dublin(1980).
|