Ling Fu-hua, Xu Ru-jin. Non-lntegrability and Chaos of a Conservative Compound Pendulum[J]. Applied Mathematics and Mechanics, 1992, 13(1): 45-52.
Citation: Ling Fu-hua, Xu Ru-jin. Non-lntegrability and Chaos of a Conservative Compound Pendulum[J]. Applied Mathematics and Mechanics, 1992, 13(1): 45-52.

Non-lntegrability and Chaos of a Conservative Compound Pendulum

  • Received Date: 1991-03-04
  • Publish Date: 1992-01-15
  • By using a series of canonical transformations(Birkhoff's series),an approximate integral of a conservative compound pendulum is evaluated.Level lines of this approximate integral are compared with the numerical simulation results.It is seen clearly that with a raised energy level,the nearly integrable system becomes non-integrable,i.e.the regular motion pattern changes to the chaotic one.Experiments with such a pendulum device display the behavior mentioned above.
  • loading
  • [1]
    Hénon,M:and C.Héiles,The applicability of the third integral of the motion,some numerical experiment,Astron.J.,69(1964),73-79.
    [2]
    Gustavson,F.,On constructing formal integrals of a Hamiltonian system near an equilibrium point,Astron.J.,71(1966),670-686.
    [3]
    凌复华,《非线性振动中的数值方法》,高等教育出版让(即将出版).
    [4]
    凌复华、殷学纲、何冶奇,《常微分方程数值方法及其在力学中的应用》,重庆大学出版社(即将出版).
    [5]
    Hénon,M.,On the numerical computation of Poincare maps,Physica,50(1982),413-416.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2750) PDF downloads(634) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return