Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.
Citation: Liang Haoyun. Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C[J]. Applied Mathematics and Mechanics, 1996, 17(10): 889-894.

Principal Axis intrinsic Method and the High Dimensional Tensor Equation AX-XA=C

  • Received Date: 1996-03-06
  • Publish Date: 1996-10-15
  • The present paper spreads the principal axis intrinsic method to the high dimensional case and discusses the solution of the tensor equation AX-XA=C.
  • loading
  • [1]
    R.Hill,Aspects of invariance in solid mechanics,Adr.in Appl.Mech.,18,1 (1978).
    [2]
    郭仲衡,R,N,Dubey,非线性连续介质力学中的"主轴法",力学进展.13(1) (1.683).
    [3]
    Guo Zhongheng,Rates of stretch tensors,J.Elasticity,14 (1984),263.
    [4]
    梁浩云,从主轴表示到抽象表示,力学进展;20(3) (1990),303.
    [5]
    梁浩云,连续介质基本主标架旋率的绝对表示,应用数学和力学,12(1) (1991),39.
    [6]
    梁浩云,《主轴法的近期进展》,兰州大学出版社(1991).
    [7]
    郭仲衡,TH.Lehmann,伸缩张量率的抽象表示,力学学报,23(6) (1991),712.
    [8]
    Guo Zhongheng,Th.Lehmann,Liang Haoyun and Chi-sing Man,Twirl tensors and the tensor equation AX-XA=C,J.Elasticity,27 (1992),227.
    [9]
    Guo Zhongheng,Th.Lehmann and Liang Haoyun,Further remarks on stretch tensors,Transactions of the CSME,15,2 (1991),161.
    [10]
    Th.Lehmann,Guo Zhongheng and Liang Haoyun,The conjugacy between Cauchy stress and logarithm of the left stretch tensor,Eur.J.Mech.,A/Solids,10,4 (1991),395.
    [11]
    Th.Lehmann and Liang Haoyun,The stress conjugate to logarithmic strain InV.,ZAMM,73,12(1993),357.
    [12]
    郭仲衡,连续介质的自旋和伸长率标架旋率,应用数学和力学,9(12) (1988), 1045-1048.
    [13]
    程莉、黄克智,固化物质导数与标架旋率,力学学报,19 (1987),524.
    [14]
    A.Hoger and D.E.Carlson,On the derivative of the square root of a tensor and Guo's rate theorem,J.Elasticity.14,3 (1984),329.
    [15]
    M.Wedderburn,On the linear matrix equation,Proc.Edinburgh Math.Soc.,22(1904),49.
    [16]
    D.E.Rutherford,On the solution of the matrix equation AX-XB=C,Nederl.Akad.Wtensch.Proc.,Ser.A,35 (1932),53.
    [17]
    W.E.Roth,The equations AX-YB=C and AX-XB=C in matrices,Proc.Rarer.Math.Soc.,3(1952),392.
    [18]
    M.Rosenblum,On the operator equation BX-XA=Q,Duke Math.J.,23 (1956),263.
    [19]
    Ma Er-chieh,A finite series solution of the matrix equation AX-XB=C,SIAM J.Appl.Math.,14(1966),490.
    [20]
    R.A.Smith,Matrix equation XA+BX=C,SIAM J.Appl.Math.,16 (1968),198.
    [21]
    A.Jameson,Solution of the equation AX+XB=C by inversion of a M × M or N × N matrix,SIAM J.Appl.Math.,16 (1968),1020.
    [22]
    P.Lancaster,Explicit solution of linear matrix equation,SIAM Rev.,12(1970),544.
    [23]
    P.C.Muller,Solution of the matrix equation AX+XB=-Q and STX-XS=-Q*.SIAM J.Appl.Math.,18 (1970),682.
    [24]
    V.Kucera,The matrix equation AX+XB=C,SIAM J.Appl.Math.,26 (1974),15.
    [25]
    A.J.M.Spencer,Theory of invariants,in Continuum Physics,Ed.by A.C.Eringen.Vol.1,Academic Press,New York (1971),239-353.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2138) PDF downloads(487) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return