Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66.
Citation:
Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66.
Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66.
Citation:
Ma Jinghuai. The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics[J]. Applied Mathematics and Mechanics, 1997, 18(1): 61-66.
The Optimal Control Variational Principle and Finite Elements Analysis for Viscoplastic Dynamics
Received Date: 1995-09-06
Publish Date:
1997-01-15
Abstract
This paper presents the optimal control variational principle for Perzyna model which is one of the main constitutive relation of viscoplasticity in dynamics. And it could also be transformed to solve the parametric quadratic programming problem.The FEM form of this problem and its implementation have also been discussed in the paper.
References
[1]
杨桂通、熊祝华,《塑性动力学》,清华大学出版社,北京(1984).
[2]
曾攀,《材料的概率疲劳损伤特性及结构分析原理》,科学技术文献出版社,北京(1993)
[3]
张饮清,非线性弹性体动力学问题的变分原理,应用数学与力学,13(1) (1992), 1-9.
[4]
徐兴、郭乙木、沈永兴,《非线性有限元及程序设计》,浙江大学出版社,杭州(1993).
[5]
张柔雷、钟万姗,参度量最小势能原理灼有限元参数二次规划解,计算结构力学及其应用.4(1)(1987), 1-11.
[6]
曾攀、钱令希,粘塑性问题的参数二次规划法,应用数学与力学,12(1) (1991), 541-545.
Relative Articles
[1] WANG Jialin, ZHANG Junbo, HE Lin, CHEN Zhuo. A Variational Principle and Applications for a Class of Specified Stress Problems [J]. Applied Mathematics and Mechanics, 2021, 42(4): 331-341. doi: 10.21656/1000-0887.410173
[2] WANG Xinwei, PENG Haijun, ZHONG Wanxie. Optimal Vaccination Strategies for a Time-Varying SEIR Epidemic Model With Latent Delay [J]. Applied Mathematics and Mechanics, 2019, 40(7): 701-712. doi: 10.21656/1000-0887.400048
[3] ZHENG Mingliang. The Noether Theorem for Nonlinear Optimal Control Problems of Mechanical Multibody System Dynamics [J]. Applied Mathematics and Mechanics, 2018, 39(7): 776-784. doi: 10.21656/1000-0887.380295
[4] QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations [J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137
[5] LIU Dong-sheng, Charles H-T WANG. Variational Principle for a Special Cosserat Rod [J]. Applied Mathematics and Mechanics, 2009, 30(9): 1091-1099. doi: 10.3879/j.issn.1000-0887.2009.09.011
[6] YAN Bo, DU Juan, HU Ning, Sekine Hideki. A Domain Decomposition Algorithm With Finite Element-Boundary Element Coupling [J]. Applied Mathematics and Mechanics, 2006, 27(4): 463-469.
[7] HUANG Bo. Gurtin-Type Region-Wise Variational Principles for Thermopiezoelectric Elastodynamics [J]. Applied Mathematics and Mechanics, 2003, 24(5): 512-518.
[8] YUE Zhu-feng. Statistic Modeling of the Creep Behavior of Metal Matrix Composites Based on Finite Element Analysis [J]. Applied Mathematics and Mechanics, 2002, 23(4): 381-390.
[9] YAN Bo, ZHANG Ru-qing. Penalty Finite Element Method for Nonlinear Dynamic Response of Viscous Fluid-Saturated Biphasic Porous Media [J]. Applied Mathematics and Mechanics, 2000, 21(12): 1247-1254.
[10] Song Yanqi, Chen Zhida. Variational Principles of Asymmetric Elasticity Theory of Finite Deformation [J]. Applied Mathematics and Mechanics, 1999, 20(11): 1115-1120.
[11] Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Method of Optimal Control Solution to Dynamic System Parameters Identification(Ⅰ) Fundamental Concept and Deterministic System Parameters Identification [J]. Applied Mathematics and Mechanics, 1999, 20(2): 127-133.
[12] Shen Min. Variational Principles in Hydrodynamics of a Non-Newtonian Fluid [J]. Applied Mathematics and Mechanics, 1998, 19(10): 891-896.
[13] Qian Rengji. A Modified Hellinger-Reissner Variational Functional Including only Two Independent Variables for Large Displacement of Thin Shallow Shell [J]. Applied Mathematics and Mechanics, 1997, 18(7): 617-624.
[14] Peng Jianshe, Zhang Jingyu, Yang Jie. Formulation of a Semi-Analytical Approach Based on Gurtin Variational Principle for Dynamic Response of General Thin Plates [J]. Applied Mathematics and Mechanics, 1997, 18(11): 987-991.
[15] Luo Shaokai. Relativistic Variation Principles and Equation of Motionfor Variable Mass Controllable Mechanical Systems [J]. Applied Mathematics and Mechanics, 1996, 17(7): 645-653.
[16] Wang Zhi-guo, Tang Li-min. Hamiltonian systems in Elasticity and Their Variational Principles [J]. Applied Mathematics and Mechanics, 1995, 16(2): 117-122.
[17] Zhu Chang-ming, Jin Yong-jie. A Finite Element——Mathematical Programming Method for Elastoplastic Problems Based on the Principle of Virtual Work [J]. Applied Mathematics and Mechanics, 1993, 14(7): 601-608.
[18] Zhang Ru-qing. Elastic Dynamics Variational Principle for Nonlinear Elastic Body [J]. Applied Mathematics and Mechanics, 1992, 13(1): 1-9.
[19] Xing Jing-tang, Zheng Zhao-chang. Some General Theorems and Generalized and Piecewise Generalized Variational Principles for Linear Elastodynamics [J]. Applied Mathematics and Mechanics, 1992, 13(9): 795-810.
[20] Zhang Ru-qing, Gao Hang-shan. The Random Variational Principle and Finite Element Method [J]. Applied Mathematics and Mechanics, 1992, 13(5): 383-388.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 21.6 % FULLTEXT : 21.6 % META : 77.8 % META : 77.8 % PDF : 0.5 % PDF : 0.5 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.6 % 其他 : 7.6 % China : 0.3 % China : 0.3 % Singapore : 0.1 % Singapore : 0.1 % 上海 : 0.1 % 上海 : 0.1 % 北京 : 1.0 % 北京 : 1.0 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.1 % 台州 : 0.1 % 哥伦布 : 0.1 % 哥伦布 : 0.1 % 宣城 : 0.1 % 宣城 : 0.1 % 张家口 : 4.4 % 张家口 : 4.4 % 杭州 : 0.6 % 杭州 : 0.6 % 柳州 : 0.3 % 柳州 : 0.3 % 洛杉矶 : 0.3 % 洛杉矶 : 0.3 % 深圳 : 0.3 % 深圳 : 0.3 % 湖州 : 0.1 % 湖州 : 0.1 % 石家庄 : 4.4 % 石家庄 : 4.4 % 芒廷维尤 : 4.1 % 芒廷维尤 : 4.1 % 芜湖 : 0.3 % 芜湖 : 0.3 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 75.3 % 西宁 : 75.3 % 郑州 : 0.1 % 郑州 : 0.1 % 阳泉 : 0.3 % 阳泉 : 0.3 % 其他 China Singapore 上海 北京 南宁 台州 哥伦布 宣城 张家口 杭州 柳州 洛杉矶 深圳 湖州 石家庄 芒廷维尤 芜湖 芝加哥 苏州 西宁 郑州 阳泉