Citation: | Liao Shijun, . Homotopy Analysis Method: a New Analytic Method for Nonlinear Problems[J]. Applied Mathematics and Mechanics, 1998, 19(10): 885-890. |
[1] |
S. J. Liao, The homotopy analysis method and its applications in mechanics, Ph. D.Dissertation, Shanghai Jiaotong University (1992).
|
[2] |
S. J. Liao, A kind of linear invariance under homotopy and some simple applications of it in mechanics, Bericht Nr. 520. Institut fuer Schiffbau der Universitaet Hamburg (1992).
|
[3] |
S. J. Liao. A second-order approximate analytical solution of a simple pendulum by the process analysis method, J. Applied Mechanics, 1(1992), 1173-1191.
|
[4] |
S. J. Liao, Application of process analysis method to the solution of 2D non-linear progressive gravity waves, J. Ship, Rasearch, 3(1992), 30-37.
|
[5] |
S. J. Liao, A kind of approximate solution technique which does not depend upon small parameters: a special example, Int. J. Non-Linear Mechanics. 30 (1905), 371-380.
|
[6] |
S. J. Liao. A kind of approximate solution technique which does not depend upon small parameters (2): an application in fluid mechanics, Int. J. Non-Linear Mechanics, 32, 5(1997), 815-822.
|
[7] |
S. J. Liao, Boundary Elements, X Ⅶ, Computational Mechanics Publications,Southampton (1995), 67-74.
|
[8] |
S. J. Liao, High-order BEM formulations for strongly nonlinear problems governed by quite general nonlinear differential operators, Int. J. Numerical Methods in Fluide, 23 (1996), 739-751.
|
[9] |
S. J. Liao and A. T. Chwang, The general BEM for strongly non-linear problems, Int. J.Numerical Methods in Fluids, 23 (1996), 467-483.
|
[10] |
S. J. Liao, Homotopy analysis method and its applications in mathematics, Journal of Bosic Science and Engineering, 5, 2 (1997). 111-125.
|
[11] |
H. Blasius, Grenzschichten in Fluessigkeiten mit kleiner Reibung, Z. Math. u. Phys., 5(1908). 1-37.
|
[12] |
L. Howarth. On the calculation of steady now in the boundary layer near the surface of a cylinder in a stream. ARC RM, 1632 (1935).
|
[13] |
L. Howarth. On the solution of tile laminar boundary layer equations. Proc. Roy. Soc.London A, 16(1938), 547-579.
|
[14] |
M.L.Abell and J.P.Braselton,The Mathe matica Handbook,Academic Press,Inc.,Boston (1992).
|
[15] |
S.L.L iao,The common ground of all numerical and analytical techniques for solving nonlinear problems,Communications of Nonlinear Science and Nonlinear Simulations,1(4)(1996),26-30.
|