Citation: | Ni Migjiu, Xi Guang, Wang Shangjin. Construction of High-Order Accuracy Implicit Residual Smoothing Schemes[J]. Applied Mathematics and Mechanics, 2000, 21(4): 365-372. |
[1] |
傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
|
[2] |
Hirsch C.Numerical Computation of Internal and External Flows,Vol.1:Fundamental of Numerical Discretization[M].Chichester:John Wiley and Sons,1988.
|
[3] |
MacCormack R W.Current status of numerical solutions of Navier-Stokes equations[Z].AIAA Paper,85-032,1985.
|
[4] |
Jameson A,Baker T J.Solution of the Euler equations for complex configurations[Z].AIAA Paper,83-1929,1983.
|
[5] |
Blazek J,Kroll N,Rossow C C.A comparison of several implicit residual smoothing methods[A].In:ICFD Conference on Numerical Methods for Fluid Dynamics[C].UK:Reading,1992.
|
[6] |
Lax P D,Wendroff B.Systems of conservation laws[J].Comm Pure Appl Math,1960,13(1):217.
|
[7] |
Dawes W N.Application of a three-dimensional viscous compressible flow solver to a high-speed centrifugal rotor-secondary flow and loss generation[Z].IMechE,C261/87,1987.
|
[8] |
Yee H C.Construction of explicit and implicit symmetric TVD schemes and their applications[J].J Comput Phys,1987,68(1):151~179.
|
[9] |
Yee H C.High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J].J Comput Phys,1990,88(1):31~61.
|
[10] |
Pullium T H,Chaussee D S.A diagonal form of an implicit approximate factorization algorithm[J].J Comput Phys,1981,39(2):347~363.
|
[11] |
Chakravathy S R.Relaxation methods for unfactored implicit upwind schemes[Z].AIAA Paper,84-0165,1984.
|
[12] |
Hathaway M D,Criss R M,Wood J R,et al.Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field[J].ASME J Turbomachinery,1993,115(3):527~542.
|
[13] |
Storer J A.Cumpsty N A.Tip leakage flow in axial compressors[J].ASME J Turbomachinery,1991,113(2):252~259.
|
[14] |
Krain H,Hoffman W.Verification of an impeller design by laser measurements and 3D-viscous flow calculations[Z].ASME,89-GT-159,1989.
|
[15] |
Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49(2):357~393.
|
[16] |
Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Numer Anal,1984,21(5):995~1011.
|
[1] | WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150 |
[2] | LIU Jiahao, HENG Supei, HEN Mengying, GUO Yilin. Low-Dissipation 5th-Order Entropy Stable Schemes[J]. Applied Mathematics and Mechanics, 2025, 46(4): 528-541. doi: 10.21656/1000-0887.450091 |
[3] | ZHANG Chengzhi, ZHENG Supei, CHEN Xue, ZHANG Rui. A 4th-Order WENO-Type Entropy Stable Scheme for Ideal Magnetohydrodynamic Equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178 |
[4] | WANG Yahui. A 3rd-Order Modified Stencil WENO Scheme for Solution of Hyperbolic Conservation Law Equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 224-236. doi: 10.21656/1000-0887.420091 |
[5] | WANG Jianling, LI Xiaogang, WANG Wenshuai. An Improved 3rd-Order WENO-Z Type Scheme[J]. Applied Mathematics and Mechanics, 2021, 42(4): 394-404. doi: 10.21656/1000-0887.410203 |
[6] | XU Weizheng, WU Weiguo. Precision Analysis of the 3rd-Order WENO-Z Scheme and Its Improved Scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. doi: 10.21656/1000-0887.390011 |
[7] | XU Wei-zheng, KONG Xiang-shao, WU Wei-guo. An Improved rd-Order WENO Scheme Based on Mapping Functions and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135. doi: 10.21656/1000-0887.370345 |
[8] | LIU You-qiong, FENG Jian-hu, REN Jiong, GONG Cheng-qi. A Second-Order Rotated-Hybrid Scheme for Solving Multi-Dimensional Compressible Euler Equations[J]. Applied Mathematics and Mechanics, 2014, 35(5): 542-553. doi: 10.3879/j.issn.1000-0887.2014.05.008 |
[9] | GE Quan-wen. Lagrangian Cell-Centered Conservative Scheme[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1239-1256. doi: 10.3879/j.issn.1000-0887.2012.10.009 |
[10] | LI Ming-jun, YANG Yu-yue, SHU Shi. Third-Order Modified Coefficient Scheme Based on the Essentially Non-Oscillatory Scheme[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1337-1346. |
[11] | QU Fu-li, WANG Wen-qia. Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 869-876. |
[12] | TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, HU Zhen. A Class of Compact Upwind TVD Difference Schemes[J]. Applied Mathematics and Mechanics, 2006, 27(6): 675-682. |
[13] | LIU Wei, ZHAO Hai-yang, XIE Yu-fei. Construction of Third-Order WNND Scheme and Its Application in Complex Flow[J]. Applied Mathematics and Mechanics, 2005, 26(1): 32-39. |
[14] | MOU Zong-ze, LONG Yong-xing, QU Wen-xiao. Difference Schemes Basing on Coefficient Approximation[J]. Applied Mathematics and Mechanics, 2005, 26(4): 497-504. |
[15] | Wu Wangyi, Cai Qingdong. A New NND Difference Scheme of Second Order in Time and Space[J]. Applied Mathematics and Mechanics, 2000, 21(6): 561-572. |
[16] | Guo Yonghui, Tian Zhou, Hao Baotian. Implicit TVD Schemes Applied to Gas-Droplet Detonation Calculation[J]. Applied Mathematics and Mechanics, 2000, 21(6): 655-660. |
[17] | Huang Dun, Yang Chun. A Comparison of Four Recent Numerical Schemes Giving High Resolution of Shock Wave and Concentrated Vortex[J]. Applied Mathematics and Mechanics, 1994, 15(9): 759-765. |
[18] | Li Yi. Four-Point Explicit Difference Schemes for the Dispersive Equation[J]. Applied Mathematics and Mechanics, 1993, 14(3): 219-223. |
[19] | Zhang Han-xin. Implicit, Non-Oscillatory Containing No Free Parameters and Dissipative (INND) Scheme[J]. Applied Mathematics and Mechanics, 1991, 12(1): 97-100. |
[20] | Su Yu-cheng. The Boundary Layer Scheme for a Singularly Perturbed Problem for the Second Order Elliptic Equation in the Rectangle[J]. Applied Mathematics and Mechanics, 1987, 8(3): 199-206. |