Citation: | WAN De-cheng, WEI Guo-wei. The Study of Quasi-Wavelets Based Numerical Method Applied to Burgers’ Equations[J]. Applied Mathematics and Mechanics, 2000, 21(10): 991-1001. |
[1] |
Morlet J,Arens G,Fourgeau E,et al.Wave propagation and sampling theory and complex waves[J].Geophysics,1982,47(2):222-236.
|
[2] |
Chui C K.An Introduction to Wavelets[M].San Diego:Academic Press,1992.
|
[3] |
Wickerhauser M V.Adapted Wavelet Analysis From Theory to Software[M].Wellesley,MA:A K Peters,1994.
|
[4] |
Cohen A,Ryan R D.Wavelets and Multiscales Signal Processing[M].London:Chapman & Hall,1995.
|
[5] |
Qian S,Weiss J.Wavelet and the numerical solution of partial differential equations[J].J Comput Phys,1993,106(1):155-175.
|
[6] |
Vasilyev O V,Paolucci S.A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in finite domain[J].J Comput Phys,1996,125(2):498-512.
|
[7] |
王诚.低雷诺数下N-S方程的积分方程解法——Gaussian小波分析的应用[D].博士论文.上海:上海交通大学,1997.
|
[8] |
Prosser R,Cant R S.On the use of wavelets in computational combustion[J].J Comput Phys,1998,147(2):337-361.
|
[9] |
Haar A.Zer theorie der orthogonalen funktionensysteme[J].Math Annal,1910,69(3):331-371.
|
[10] |
Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Transactions of the American Mathematical Society,1989,315(1):68-87.
|
[11] |
Wei G W,Zhang D S,Kouri D J.Lagrange distributed approximating functionals[J].Phys Rev Lett,1997,79(5):775-779.
|
[12] |
Wei G W,Quasi wavelets and quasi interpolating wavelets[J].Chem Phys Lett,1998,296(3-4):215-222.
|
[13] |
Wei G W.Discrete singular convolution for the Fokker-Planck equation[J].J Chem Phys,1999,110(18):8930-8942.
|
[14] |
Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics[J].Quart Appl Math,1951,9(2):225-236.
|
[15] |
Basdevant C,Deville M,Haldenwang P,et al.Spectral and finite difference solutions of the Burgers equation[J].Comput & Fluids,1986,14(1):23.
|
[1] | LIU Xiaojing, ZHOU Youhe, WANG Jizeng. Research Progresses of Wavelet Methods and Their Applications in Mechanics[J]. Applied Mathematics and Mechanics, 2022, 43(1): 1-13. doi: 10.21656/1000-0887.420388 |
[2] | CAO Yanhua, ZHANG Zitong, LI Nan. A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1045-1052. doi: 10.21656/1000-0887.420282 |
[3] | GAO Puyang, ZHAO Zitong, YANG Yang. Study on Numerical Solutions to Hyperbolic Partial Differential Equations Based on the Convolutional Neural Network Model[J]. Applied Mathematics and Mechanics, 2021, 42(9): 932-947. doi: 10.21656/1000-0887.420050 |
[4] | BAO Liping, HU Yubo, WU Liqun. Singularly Perturbed Solutions of Burgers Equations With Initial Value Discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270 |
[5] | ZHANG Ji-feng, DENG Zi-chen, ZHANG Kai. An Improved Precise Runge-Kutta Method for Structural Dynamic Equations[J]. Applied Mathematics and Mechanics, 2015, 36(4): 378-385. doi: 10.3879/j.issn.1000-0887.2015.04.005 |
[6] | LI Qing-jun, YE Xue-hua, WANG Bo, WANG Yan. Nonlinear Dynamic Behavior of the Satellite Rendezvous and Docking Based on the Symplectic Runge-Kutta Method[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1299-1307. doi: 10.3879/j.issn.1000-0887.2014.12.002 |
[7] | ZOU Li, WANG Zhen, ZONG Zhi, ZOU Dong-yang, ZHANG Shuo. Solving shock wave with discontinuity by enhanced differential transform method (EDTM)[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008 |
[8] | XIANG Jia-wei, CHEN Xue-feng, LI Xi-kui. Numerical Solution of Poisson Equation by Using Wavelet Bases of Hermite Cubic Splines on the Interval[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1243-1250. doi: 10.3879/j.issn.1000-0887.2009.10.012 |
[9] | DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010 |
[10] | GUO Yan, LIU Ru-xun. Characteristic-Based Finite Volume Scheme for 1D Euler Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 291-300. |
[11] | HU Wei-peng, DENG Zi-chen, HAN Song-mei, FAN Wei. Multi-Symplectic Runge-Kutta Methods for Landau-Ginzburg-Higgs Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 963-969. doi: 10.3879/j.issn.1000-0887.2009.08.009 |
[12] | HU Wei-peng, DENG Zi-chen, LI Wen-cheng. Multi-Symplectic Methods for Membrane Free Vibration Equation[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1054-1062. |
[13] | TIAN Li-xin, ZHAO Zhi-feng, WANG Jing-feng. Boundary Control of MKdV-Burgers Equation[J]. Applied Mathematics and Mechanics, 2006, 27(1): 98-104. |
[14] | ZHAN Jie-min, LI Yok-sheng. Generalized Finite Spectral Method for 1D Burgers and KdV Equations[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1431-1438. |
[15] | XIE Xin-yu, ZHANG Ji-fa, ZENG Guo-xi. Similarity Solution of Self-Weight Consolidation Problem for Saturated Soil[J]. Applied Mathematics and Mechanics, 2005, 26(9): 1061-1066. |
[16] | MEI Shu-li, LU Qi-shao, ZHANG Sen-wen, JIN Li. Adaptive Interval Wavelet Precise Integration Method for Partial Differential Equations[J]. Applied Mathematics and Mechanics, 2005, 26(3): 333-340. |
[17] | WANG Wen-qia. Class of Alternating Group Method of Burgers’ Equation[J]. Applied Mathematics and Mechanics, 2004, 25(2): 213-220. |
[18] | TIAN Li-xin, XU Bo-qiang, LIU Zeng-rong. Wavelet Approximate Inertial Manifold and Numerical Solution of Burgers' Equation[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1013-1024. |
[19] | Lin Yurui, Tian Lixin, Liu Zengrong. The Wild Solutions of the Induced Form under the Spline Wavelet Basis in Weakly Damped Forced KdV Equation[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1071-1076. |
[20] | Lu Dianchen, Tian Lixin, Liu Zengrong. Wavelet Basis Analysis in Perturbed Periodic KdV Equation[J]. Applied Mathematics and Mechanics, 1998, 19(11): 974-979. |