Citation: | MA Shi-wang, WANG Zhi-cheng, YU Jian-she. The Existence of Periodic Solutions for Nonlinear Systems of First-Order Differential Equations at Resonance[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1156-1164. |
[1] |
Hale J K.Ordinary Differential Equations[M].New York:Wiley Interscience,1969.
|
[2] |
Nagle R K.Nonlinear boundary value problems for ordinary differential equations with a small parameter[J].SIAM J Math Analysis,1978,9(3):719-729.
|
[3] |
Mawhin J.Landesman-Lazter.stype problems for nonlinear equations[A].In:Conferenze Seminario Matematica[M].DiBari:Dell Universita,1977,147.
|
[4] |
Fucik S.Solva bility of Nonlinear Equations and Boundary Value Problems[M].Dordrecht,Holland:D.Reidel Publishing,1980.
|
[5] |
Nagle R K,Sinkala Z.Existence of 2π-periodic solutions for nonlinear systems of first-order ordinary differential equations at resonance[J].Nonlinear Analysis(TMA),1995,25(1):1-16.
|
[6] |
MA Shi-wang,WANG Zhi-cheng,YU Jian-she.Coincidence degree and periodic solutions of Duffing equations[J].Nonlin ear Analysis(TMA),1998,34(2):443-460.
|
[7] |
Lazer A C,Leach D E.Bounded perturbations of forced harmonic oscillations at resonance[J],Ann Mat Pura Appl,1969,82(1):49-68.
|
[8] |
Schuur J D.Perturbation at resonance for a fourth order ordinary differential equation[J].J Math Anal Appl,1978,65(1):20-25.
|
[9] |
丁同仁.共振点的非线性振动[J].中国科学(A辑),1982,(1):1-13.
|
[10] |
HAO Dun-yuan,MA Shi-wang.Semilinear Duffing equations crossing resonance points[J].J Differential Equations,1997,133(1):98-116.
|
[11] |
Mawhin J.Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mapping in locally convex topological vector spaces[J].J Differential Equations,1972,12(2):610-636.
|
[12] |
Mawhin J.Topolo gical Degree Methods in Nonlinear Boundary Value Problems CBMS[M].Providence RI:Amer Math Soc,1979,40.
|
[13] |
Deimling K.N onlinear Functional Analysis[M].New York:Springer-Verlag,1985.
|
[1] | LI Shuguang, QU Kai. Homogenization Modeling of Single-Phase Gas Local Flow in Porous Media[J]. Applied Mathematics and Mechanics, 2024, 45(2): 175-183. doi: 10.21656/1000-0887.440246 |
[2] | DAI Dexuan, WANG Shaowei. Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid[J]. Applied Mathematics and Mechanics, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298 |
[3] | GUO Yong, XIE Jianhua. Research on the Flutter of Micro-Scale Cantilever Pipes——A Finite-Dimensional Analysis[J]. Applied Mathematics and Mechanics, 2018, 39(2): 199-214. doi: 10.21656/1000-0887.370400 |
[4] | LI Wei, ZHAO Jun-feng, LI Rui-hong, Natasa Trisovic. Non-Stationary Response of a Stochastic System With Fractional Derivative Damping Under Gaussian White-Noise Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(1): 63-70. doi: 10.3879/j.issn.1000-0887.2014.01.007 |
[5] | HUANG Hui-chun, ZHANG Yan-lei, CHEN Li-qun. A Galerkin Numerical Method for the Pipe Conveying Supercritical Fluid Under Forced Vibration[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1100-1106. doi: 10.3879/j.issn.1000-0887.2014.10.004 |
[6] | YANG Yan, DING Hu, CHEN Li-qun. Nonlinear Vibration of Vehicle-Pavement Coupled System Based on High-Order Galerkin Truncation[J]. Applied Mathematics and Mechanics, 2013, 34(9): 881-890. doi: 10.3879/j.issn.1000-0887.2013.09.001 |
[7] | Mofid Gorjid, Morteza Alipanah, Majid Shateri, Elham Farnad. An Analytical Solution for Laminar Flow Through a Leaky Tube[J]. Applied Mathematics and Mechanics, 2011, 32(1): 66-71. doi: 10.3879/j.issn.1000-0887.2011.01.007 |
[8] | FU Yi-ming, LI Sheng, JIANG Ye-jie. Non-Linear Free Vibration Analysis of Piezoelastic Laminated Plates With Interfacial Damage[J]. Applied Mathematics and Mechanics, 2009, 30(2): 127-141. |
[9] | ZHANG Neng-hui, CHENG Chang-jun. Two-Mode Galerkin Approach in Dynamic Stability Analysis of Viscoelastic Plates[J]. Applied Mathematics and Mechanics, 2003, 24(3): 221-228. |
[10] | HUANG Hao, WEN Gong-bi. A New Unsteady Three Dimensional Model for Macromolecular Transport and Water Filtration Across the Arterial Wall[J]. Applied Mathematics and Mechanics, 2001, (10): 1043-1057. |
[11] | ZHANG Neng-hui, CHENG Chang-jun. A Time Domain Method for Quasi-Static Analysis of Viscoelastic Thin Plates[J]. Applied Mathematics and Mechanics, 2001, (10): 1001-1008. |
[12] | CHEN Li-qun, CHENG Chang-jun. Dynamical Behavior of Nonlinear Viscoelastic Beams[J]. Applied Mathematics and Mechanics, 2000, 21(9): 897-902. |
[13] | CHEN Li-qun, CHENG Chang-jun. Stability and Chaotic Motion in Columns of Nonlinear Viscoelastic Material[J]. Applied Mathematics and Mechanics, 2000, 21(9): 890-896. |
[14] | WU Wang-yi, TAN Wen-chang, LI Juan, XIE Wen-jun. Theoretical Study on the Bifurcation of Vortexes Structure for Flow in Curved Tube[J]. Applied Mathematics and Mechanics, 2000, 21(12): 1215-1226. |
[15] | Wang Zhihua. Periodic Viable Trajectories of Differential Inclusions[J]. Applied Mathematics and Mechanics, 1999, 20(6): 633-639. |
[16] | Xiao Liming. Existence and Uniqueness of Solutions to the Dynamic Equations for Koiter Shells[J]. Applied Mathematics and Mechanics, 1999, 20(7): 749-755. |
[17] | Cen Ren-jing, Qin Chan, Tan Zhe-dong. The Couple Motion Between Vessel Wall and blood in the Entrance Region of a Tapered Vessel[J]. Applied Mathematics and Mechanics, 1995, 16(1): 15-22. |
[18] | Zhao Qi, Ye Tianqi. Hybrid Changeable Basis Galerkin Technique for Nonlinear Analysis of Structures[J]. Applied Mathematics and Mechanics, 1995, 16(7): 625-631. |
[19] | Cen Ren-jing, Tan Zhe-dong, Chen Zheng-zong. The Stress Analysis of Vessel wall in the Entrance Region of a Tapered Vessel[J]. Applied Mathematics and Mechanics, 1994, 15(12): 1083-1090. |
[20] | Cen Ren-jing. The Blood Flow and the Motion of Vessel Wall[J]. Applied Mathematics and Mechanics, 1988, 9(8): 713-724. |