Citation: | CHENG Yuan-sheng, Y K CHEUNG, F T KAU. Dynamic Response of Plates Due to Moving Vehicles Using Finite Strip Method[J]. Applied Mathematics and Mechanics, 2002, 23(5): 453-458. |
[1] |
Wu J S,Lee M L,Lai T S.The dynamic analysis of a flat plate under a moving load by the finite element method[J].International Journal for Numerical Methods in Engineering,1987,24(4):743-762.
|
[2] |
Taheri M R,Ting E C.Dynamic response of plate to moving loads:finite element method[J].Computers & Structures,1990,34(3):509-521.
|
[3] |
Yener M,Chompooming K.Numerical method of lines for analysis of vehicle-bridge dynamic interaction[J].Computers & Structures,1994,53(5):709-726.
|
[4] |
Humar J L,Kashif A H.Dynamic response analysis of slab-type bridges[J].Journal of Structural Engineering,1995,121(1):48-62.
|
[5] |
Taheri M R,Ting E C.Dynamic response of plate to moving loads:structural impedance method[J].Computers & Structures,1989,33(6):1379-1393.
|
[6] |
Zheng D Y.Vibration and stability analysis of plate-type structures under moving loads by analytical and numerical methods[D].Ph D Thesis.Hong Kong:The University of Hong Kong,1999.
|
[7] |
Cheung Y K,Tham L G.Finite Strip Method[M].Boca Raton:CRC Press,1998.
|
[8] |
Au F T K,Zheng D Y,Cheung Y K.Vibration and stability of nonuniform beams with abrupt changes of cross-section by using C1 modified beam vibration functions[J].Applied Mathematical Modelling,1999,23(1):19-34.
|
[9] |
Cheng Y S.Vibration analysis of bridges under moving vehicles and trains[D].Ph D Thesis.Hong Kong:The University of Hong Kong,2000.
|
[1] | LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems[J]. Applied Mathematics and Mechanics, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003 |
[2] | ZHU Dan-yang, ZHANG Ya-hui. A Methodology Based on FEM and Duhamel Integration for Bridges Subjected to Moving Loads[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1287-1298. doi: 10.3879/j.issn.1000-0887.2014.12.001 |
[3] | CHEN Ye-fei, LI Wen-cheng, DENG Zi-chen>. Discontinuous Galerkin Finite Element Method Based on Rosenbrock-Type Exponential Integrator[J]. Applied Mathematics and Mechanics, 2013, 34(7): 697-703. doi: 10.3879/j.issn.1000-0887.2013.07.004 |
[4] | DENG Ming-xiang, FENG Yong-ping. Two-Scale Finite Element Method for Piezoelectric Problem in Periodic Structure[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1424-1438. doi: 10.3879/j.issn.1000-0887.2011.12.004 |
[5] | Ivan Šestak, Bo>>ko S. Jovanović. Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction[J]. Applied Mathematics and Mechanics, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008 |
[6] | LIU Yang, LI Hong, HE Siriguleng. Mixed Time Discontinuous Space-Time Finite Element Method for Convection Diffusion Equations[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1435-1442. |
[7] | TANG Qiong, CHEN Chuan-miao, LIU Luo-hua. Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation[J]. Applied Mathematics and Mechanics, 2006, 27(3): 300-304. |
[8] | LI Hong, LIU Ru-xun. The Space-Time Finite Element Method for Parabolic Problems[J]. Applied Mathematics and Mechanics, 2001, 22(6): 613-624. |
[9] | G. M. Amiraliyev, Hakk Duru. A Uniformly Convergent Finite Difference Method for a Singularly Perturbed Initial Value Problem[J]. Applied Mathematics and Mechanics, 1999, 20(4): 363-370. |
[10] | Mei Liquan. A Spectral Streamline Diffusion Finite Element Coupled Method of Unsteady Transport Equation in the Field of Neutron Logging[J]. Applied Mathematics and Mechanics, 1999, 20(7): 691-698. |
[11] | Lű Enlin. Perturbational Solutions for Fuzzy-Stochastic Finite Element Equilibrium Equations (FSFEEE)[J]. Applied Mathematics and Mechanics, 1997, 18(7): 631-638. |
[12] | Li Long-yuan. The Rationalism Theory and Its Finite Element Analysis Method of Shell Structures[J]. Applied Mathematics and Mechanics, 1990, 11(4): 365-372. |
[13] | Chen Yao-song, Cao Nian-zheng. A Hybrid FEM Algorithm for Fluid Flow in a Visco-Elastic Pipe[J]. Applied Mathematics and Mechanics, 1989, 10(6): 517-622. |
[14] | Wu Rui-feng, Yang Hai-tian. The Perturbation Finite Element Method for Solving the Plane Problem in Consideration of Linear Creep[J]. Applied Mathematics and Mechanics, 1988, 9(1): 19-29. |
[15] | Xie Zhi-cheng, Yang Xue-zhong, Chien Zhen-dong, Liu Yan, Zhang Li-ping. Perturbation Finite Element Method for Solving Geometrically Non-linear Problems of Axisymmetrical Shell[J]. Applied Mathematics and Mechanics, 1984, 5(5): 709-722. |
[16] | Wu Chi-guang. The Method of Weighted Difference for Singular Perturbation Problem[J]. Applied Mathematics and Mechanics, 1984, 5(5): 633-638. |
[17] | Xie Zhi-cheng, Wang Rei-wu, Yang Xue-zhong, Chien Zhen-dong. The Perturbation Finite Element Method for Solving Problems with Nonlinear Materials[J]. Applied Mathematics and Mechanics, 1983, 4(1): 123-134. |
[18] | Jin Wen-lu. Nonstationary Random Vibration Analysis of Linear Elastic Structures with Finite Element Method[J]. Applied Mathematics and Mechanics, 1982, 3(6): 757-766. |
[19] | Zheng Jia-dong, Hu Hui-zhi, Xu Hong-jiang, Zhu Ze-min, Yin Zong-ze. The Application of the Finite Element Method to Solving Biot’s Consolidation Equations[J]. Applied Mathematics and Mechanics, 1982, 3(6): 793-805. |
[20] | Yang Zhen-rong. “Velocity” Finite Element Method for Dynamic Problem[J]. Applied Mathematics and Mechanics, 1980, 1(1): 125-138. |