Citation: | KH. I. Khalil. The Drag Exerted by an Oblate Rotating Atmosphere on an Artificial Satellite[J]. Applied Mathematics and Mechanics, 2002, 23(9): 903-914. |
[1] |
Kampos B.Nasa CR-1008-Guidnace,Flight Mech,and Trajectory Optimization[M].Vol.IX,Washington,1968.
|
[2] |
Sehnal L.Satellite Dynamics[M].Giocagolia Ed.New York:Univ of Texas Press,1975.
|
[3] |
King-Hele D G.Satellite Orbits in an Atmosphere:Theory and Applications[M].Glasgow:Blackic and Sons,1987.
|
[4] |
Milani,N,Nobili A,Frainella P.Non Gravitational Perturbations[M].Bristol:Adam Hilger (IOP),1987.
|
[5] |
Brouwer D,Hori G.Theoretical evaluation of atmospheric drag effects in the motion of an artificial satellite[J].The Astronomical Journal,1961,66(5):193-225.
|
[6] |
Hoots F R.Theory of the motion of an artificial earth satellite[J].Celestial Mechanics,1981,23(4):307-336.
|
[7] |
Dehlase F.Analytical treatment of air drag and earth oblateness effect upon an artificial satellite [J].Celestial Mechanics,1991,52(1):85-103.
|
[8] |
Deprit A.Canonical transformations depending on a small parameter[J].Celestial Mechanics,1969,1(1):12-30.
|
[9] |
Kamel A A.Expansion formulae in canonical transformation depending on a small parameter[J].Celestial Mechanics,1969,1(2):190-199.
|
[10] |
Bell W W.Special Functions for Scientists and Engineers[M].London:Van Nostrand,1968.
|
[1] | ZHENG Mingliang. Lie Symmetries and Conserved Quantities of Lagrangian Systems With Time Delays[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1161-1168. doi: 10.21656/1000-0887.410184 |
[2] | ZHOU Jingrun, FU Jingli. Lie Symmetry of Constrained Hamiltonian Systems and Its Application in Field Theory[J]. Applied Mathematics and Mechanics, 2019, 40(7): 810-822. doi: 10.21656/1000-0887.390218 |
[3] | BAI Long, DONG Zhi-feng, GE Xin-sheng. Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005 |
[4] | ZHONG Wan-xie, GAO Qiang. Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group[J]. Applied Mathematics and Mechanics, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001 |
[5] | Abdul-Kahar Rosmila, Ramasamy Kandasamy, Ismoen Muhaimin. Lie Symmetry Group Transformation for MHD Natural Convection Flow of a Nanofluid Over a Linearly Porous Stretching Sheet in the Presence of Thermal Stratification[J]. Applied Mathematics and Mechanics, 2012, 33(5): 562-573. doi: 10.3879/j.issn.1000-0887.2012.05.005 |
[6] | SUI Yong-feng, ZHONG Wan-xie. Eigenvalue Problem of a Large Scale Indefinite Gyroscopic Dynamic System[J]. Applied Mathematics and Mechanics, 2006, 27(1): 13-20. |
[7] | FANG Jian-hui, CHEN Pei-sheng, ZHANG Jun. Form Invariance and Lie Symmetry of Variable Mass Nonholonomic Mechanical System[J]. Applied Mathematics and Mechanics, 2005, 26(2): 187-192. |
[8] | SUN Yan, ZHOU Gang, LIU Zheng-xing. Plane Infinite Analytical Element and Hamiltonian System[J]. Applied Mathematics and Mechanics, 2003, 24(5): 505-511. |
[9] | LIU Hai-feng, ZHOU Wei-xing, WANG Fu-chen, GONG Xin, YU Zun-hong. The Wavelet Transform of Periodic Function and Nonstationary Periodic Function[J]. Applied Mathematics and Mechanics, 2002, 23(9): 943-950. |
[10] | QI Zhao-hui, Alexander P. Seyranian. On the Stability Boundary of Hamiltonian Systems[J]. Applied Mathematics and Mechanics, 2002, 23(2): 173-178. |
[11] | XIONG Yong, SHI Ding-hua. Affine Transformation in Random Iterated Function Systems[J]. Applied Mathematics and Mechanics, 2001, 22(7): 729-734. |
[12] | Fu Jingli, Chen Xiangwei, Luo Shaokai. Lie Symmetries and Conserved Quantities of Rotational Relativistic Systems[J]. Applied Mathematics and Mechanics, 2000, 21(5): 495-500. |
[13] | Mei Fengxiang. Lie Symmetries and Conserved Quantities of Holonomic Variable Mass Systems[J]. Applied Mathematics and Mechanics, 1999, 20(6): 592-596. |
[14] | Wei Zhiyong, Zhu Yongtai. The Extended Jordan’s Lemma and the Relation between Laplace Transform and Fourier Transform[J]. Applied Mathematics and Mechanics, 1997, 18(6): 531-534. |
[15] | Wang Zhi-guo, Tang Li-min. Hamiltonian systems in Elasticity and Their Variational Principles[J]. Applied Mathematics and Mechanics, 1995, 16(2): 117-122. |
[16] | Zhong Wan-xie. Plane Elasticity Sectorial Donain and the Hamiltonian System[J]. Applied Mathematics and Mechanics, 1994, 15(12): 1057-1066. |
[17] | Q. K. Ckori, Naseer Ahmed. Applicability of Hamilton-Jacobi Method to Nonlinear Nonholonomic Systems[J]. Applied Mathematics and Mechanics, 1988, 9(10): 879-892. |
[18] | Gu An-hai. The Transformation and General Pythagoras’ Theorem on the Linear Manifold[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1134-1134. |
[19] | Gu An-hai. The Transformation Function Φ and the Condition Needed for KUR Space Having the Fixed Point[J]. Applied Mathematics and Mechanics, 1986, 7(3): 273-277. |
[20] | Ge Zheng-ming, Cheng Yi-he. The Hamilton’s Principle of Nonholonomic Variable Mass Systems[J]. Applied Mathematics and Mechanics, 1983, 4(2): 277-288. |