Citation: | WANG Xiang-dong, XU Xiao-zeng, HANG Xi-ting. Maximum Principles for Greneralized Solutions of Quasi-Linear Elliptic Equations[J]. Applied Mathematics and Mechanics, 2003, 24(4): 405-413. |
[1] |
Ladyzenskaja O A, Ural'ceva N N.线性和拟线性椭圆型方程[M].叶其孝译.北京:科学出版社,1987,156-194.
|
[2] |
Gilbarg D,Trudinger N S.二阶椭圆偏微分方程[M].叶其孝译.上海:上海科学技术出版社,1981,178-234.
|
[3] |
Morry C B.Second order elliptic equations in several variables and Hlder continuity[J].Math Z,1959,72(4):146-164.
|
[4] |
Bicadze A B.线性偏微分方程的某些问题[J].数学进展,1958,4(3):320-403.
|
[5] |
Trudinger N S.Maximum principles for linear nonuniformly elliptic oprerators with measurable coefficients[J].Math Z,1977,156(4):291-310.
|
[6] |
梁(汲/金)廷,于呜岐.关于二阶线性椭圆型方程广义解的弱最大值原理[J].山西大学学报(自然科学版),1982,7(2):8-14.
|
[7] |
Uhlenbeck K.Regularity for a class of nonlinear elliptic systems[J].Acta Math,1977,138(2):219-240.
|
[8] |
梁(汲/金)廷.椭圆型方程广义解的有界性和可积性[J].山西大学学报(自然科学版),1986,9(1):115-130.
|
[9] |
于呜岐,梁(汲/金)廷.拟线性椭圆型方程广义解的弱最大值原理[J].山西大学学报(自然科学版),1989,12(3):240-248.
|
[10] |
梁(汲/金)廷.拟线性椭圆型方程广义解的最大值原理[J].中山大学学报(自然科学版),1988,27(3):107-122.
|
[11] |
Serrin J.Local behavior of solutions of quasi-linear equation[J].Acta Math,1964,111(5):247-302.
|
[12] |
Trudinger N S.On Harnack type inequalities and their applications to quasi-linear elliptic equations[J].Comm Pure Appl Math,1967,20(3):721-747.
|
[13] |
Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N.Linear and quasi-linear equations of parabolic type[J].Transl Math Monographs,1968,23(1):90-95.
|
[14] |
梁(汲/金)廷,王向东.拟线性椭圆型方程广义解最大模的先验估计[J].应用数学和力学,1990,11(10):881-892.
|