LI Mao-lin, FU Ming-fu. Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1411-1416.
Citation: LI Mao-lin, FU Ming-fu. Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1411-1416.

Limit Analysis of Viscoplastic Thick-Walled Cylinder and Spherical Shell Under Internal Pressure Using a Strain Gradient Plasticity Theory

  • Received Date: 2008-07-14
  • Rev Recd Date: 2008-10-15
  • Publish Date: 2008-12-15
  • Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory.As a result,the current solutions can capture the size effect at the micron scale.Numerical results show that the smaller the inner radius of the cylinder or spherical shell,the more significant the scale effects.Results also show that the size effect is more evident with the increase of strain or strain-rate sensitivity index.The classical plastically-based solutions of the same problems are shown to be a special case of the present solution.
  • loading
  • [1]
    Mühlhaus H B, Aifantis E C.A variational principle for gradient plasticity [J].International Journal of Solids and Structure,1991,28(7):845-857. doi: 10.1016/0020-7683(91)90004-Y
    [2]
    Assempour A, Safikhani A R, Hashemi R.An improved strain gradient approach for determination of deformation localization and forming limit diagrams[J].Journal of Materials Processing Technology,2008,DOI: 10.1016/j.jmatprotec.2008.04.030.
    [3]
    Zhu H X,Karihaloo B L.Size-dependent bending of thin metallic films[J].International Journal of Plasticity,2008,24(6):991-1007. doi: 10.1016/j.ijplas.2007.08.002
    [4]
    Tsagrakis I,Aifantis E C.Strain gradient and wavelet interpretation of size effects in yield and strength[J].Mechanics of Materials,2003,35(8):733-745. doi: 10.1016/S0167-6636(02)00205-3
    [5]
    Aifantis E C.Update on a class of gradient theories[J].Mechanics of Materials,2003,35(3):259-280. doi: 10.1016/S0167-6636(02)00278-8
    [6]
    Jiang G L. Nonlinear finite element formulation of kinematic limit analysis [J].International Journal for Numerical Methods in Engineering,1995,38(16):2775-2807. doi: 10.1002/nme.1620381607
    [7]
    Haghi M,Anand L.Analysis of strain-hardening viscoplastic thick-walled sphere and cylinder under external pressure[J].Internat Journal of Plasticity,1991,7(3):123-140. doi: 10.1016/0749-6419(91)90027-V
    [8]
    Leu S Y.Analytical and numerical investigation of strain-hardening viscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis[J].Computer Methods in Applied Mechanics and Engineering,2007,196(25):2713-2722. doi: 10.1016/j.cma.2007.02.001
    [9]
    Gao X L. An expanding cavity model incorporating strain-hardening and indentation size effects[J].Internat Journal of Solids and Structure,2006,43(21):6615-6629. doi: 10.1016/j.ijsolstr.2006.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2791) PDF downloads(668) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return