Citation: | JIAO Jian-jun, CHEN Lan-sun, Juan J. Nieto, Torres Angela. Permanence and Global Attractivity of a Stage-Structured Predator-Prey Model With Continuous Harvesting on Predator and Impulsive Stocking on Prey[J]. Applied Mathematics and Mechanics, 2008, 29(5): 589-600. |
[1] |
Nieto J J,Rodriguez-Lopez R.Periodic boundary value problems for non-Lipschitzian impulsive functional differential equations[J].J Math Anal Appl,2006,31(8):593-610.
|
[2] |
Saker S H.Oscillation and global attractivity of impulsive periodic delay respiratory dynamics model[J].Chinese Ann Math,Ser B,2005,26(4):511-522. doi: 10.1142/S0252959905000403
|
[3] |
d'Onofrio A.A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences[J].Physica D: Nonlinear Phenomena,2005,20(8):220-235.
|
[4] |
GAO Shu-jing,CHEN Lan-sun.Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission[J].Discrete and Continuous Dynamical Systems,Ser B,2007,7(1):77-86.
|
[5] |
Clark C W.Mathematical Bioeconomics[M].New York:Wiley,1990.
|
[6] |
JIAO Jian-jun,MENG Xin-zhu,CHEN Lan-sun.A stage-structured Holling mass defence predator-prey 3 model with impulsive perturbations on predators[J].Applied Mathematics and Computation,2007,189(2):1448-1458. doi: 10.1016/j.amc.2006.12.043
|
[7] |
SON Xin-yu,LI Yong-feng.Dynamic complexities of a Holling Ⅱ two-prey one-predator system with impulsive effect[J].Chaos,Solitons and Fractals,2007,33(2):463-478. doi: 10.1016/j.chaos.2006.01.019
|
[8] |
Aiello W G,Freedman H I.A time-delay model of single-species growth with stage-structure[J].Math Biosci,1990,101(2):139-153. doi: 10.1016/0025-5564(90)90019-U
|
[9] |
Freedman H I,Gopalsamy K.Global stability in time-delayed single species dynamics[J].Bull Math Biol,1986,48(5/6):485-492.
|
[10] |
Beretta E,Kuang Y.Global analysis in some delayed ratio-dependent predator-prey system[J].Nonlinear Anal,1998,32(3):381-408. doi: 10.1016/S0362-546X(97)00491-4
|
[11] |
YANG Kuang.Delay Differential Equation With Application in Population Dynamics[M].N Y:Academic Press,1993,67-70.
|
[12] |
Wang W,Chen L.A predator-prey system with stage structure for predator[J].Comput Math Appl,1997,33(8):83-91.
|
[13] |
JIAO Jian-jun,PANG Guo-ping,CHEN Lan-sun,et al.A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator[J].Applied Mathematics and Computation,2008,195(1):316-325. doi: 10.1016/j.amc.2007.04.098
|
[14] |
SONG Xin-yu,CHEN Lan-sun.Optimal harvesting policy and stability for a single-species growth model with stage structure[J].Journal of System Sciences and Complex,2002,15(2):194-201.
|
[15] |
DONG Ling-zhen,CHEN Lan-sun,SUN Li-hua.Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively[J].Math Methods Appl Sci,2006,29(4):415-425. doi: 10.1002/mma.688
|
[16] |
Wang W,Mulone G,Salemi F,et al.Permanence and stability of a stage-structured predator-prey model[J].J Math Anal Appl,2001,262(2):499-528. doi: 10.1006/jmaa.2001.7543
|
[17] |
Lakshmikantham V,Bainov D D,Simeonov P.Theory of Impulsive Differential Equations[M].Singapor:World Scientific,1989.
|
[18] |
Bainov D,Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications[M].66.New York:Longman,1993.
|
[19] |
Caltagirone L E,Doutt R L.Global behavior of an SEIRS epidemic model with delays,the history of the vedalia beetle importation to California and its impact on the development of biological control[J].Ann Rev Entomol,1989,34:1-16. doi: 10.1146/annurev.en.34.010189.000245
|
[1] | LIU Rong, LIU Guirong. Optimal Harvesting in a Periodic 3-Species Predator-Prey Model With Size Structure in Predators[J]. Applied Mathematics and Mechanics, 2021, 42(5): 510-521. doi: 10.21656/1000-0887.410285 |
[2] | SU Xiaohu, JIANG Jinping. Existence of Time-Dependent Global Attractors for Beam Equations[J]. Applied Mathematics and Mechanics, 2020, 41(2): 195-203. doi: 10.21656/1000-0887.400088 |
[3] | WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256 |
[4] | YAN Huan, ZHAO Zhen-jiang, SONG Qian-kun. Global μ-Stability of Impulsive Complex-Valued Neural Networks With Mixed Time-Varying Delays[J]. Applied Mathematics and Mechanics, 2015, 36(7): 756-767. doi: 10.3879/j.issn.1000-0887.2015.07.008 |
[5] | YAN Huan, SONG Qian-kun, ZHAO Zhen-jiang. Global Stability of Impulsive Complex-Valued Neural Networks With Time Delay on Time Scales[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1191-1203. doi: 10.3879/j.issn.1000-0887.2015.11.007 |
[6] | LI Shuang-bao, ZHANG Wei. Global Bifurcations and Multi-Pulse Chaotic Dynamics of a Rectangular Thin Plate With One-to-One Internal Resonance[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1043-1055. doi: 10.3879/j.issn.1000-0887.2012.09.002 |
[7] | XIAO Hai-bin. Regularity and Finite Dimensionality of Attractor for Plate Equation on Rn[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1372-1381. doi: 10.3879/j.issn.1000-0887.2010.11.010 |
[8] | LUO Zhi-xue, DU Ming-yin. Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model[J]. Applied Mathematics and Mechanics, 2008, 29(5): 618-630. |
[9] | YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630. |
[10] | JIAO Jian-jun, CHEN Lan-sun. Delayed Stage-Structured Predator-Prey Model With Impulsive Perturbations on Predator and Chemical Control on Prey[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1502-1512. |
[11] | YANG Zhi-chun, XU Dao-yi. Global Exponential Stability of Hopfield Neural Networks With Variable Delays and Impulsive Effects[J]. Applied Mathematics and Mechanics, 2006, 27(11): 1329-1334. |
[12] | LI Wan-tong. Permanence and Asymptotic Properties of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1126-1132. |
[13] | LIU Yu-Ji. Global Attractivity for a Class of Nonlinear Delay Difference Equations[J]. Applied Mathematics and Mechanics, 2002, 23(3): 321-330. |
[14] | LI Xian-yi. Boundedness and Persistence and Global Asymptotic Stability for a Class of Delay Difference Equations With Higher Order[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1188-1194. |
[15] | ZHOU Dong-ming, CAO Jin-de, LI Ji-bin. Estimation of Attraction Domain and Exponential Convergence Rate of Continuous Feedback Associative Memory[J]. Applied Mathematics and Mechanics, 2001, 22(3): 275-280. |
[16] | PU Zhi-lin, XU Dao-yi. Global Attractivity and Global Exponential Stability for Delayed Hopfield Neural Network Models[J]. Applied Mathematics and Mechanics, 2001, 22(6): 633-638. |
[17] | ZHANG Yin-ping, SUN Ji-tao. Persistence in a Three Species Lotka-Volterra Nonperiodic Predator-Prey System[J]. Applied Mathematics and Mechanics, 2000, 21(8): 792-796. |
[18] | Luo Jiaowan, Liu Zaiming. On the Perturbational Global Attractivity of Nonautomous Delay Differential Equations[J]. Applied Mathematics and Mechanics, 1998, 19(12): 1107-1111. |
[19] | Lu Qin-he, Xu Zheng-fan, Lin Fu-qin, Liu Zeng-rong. The Global Bifurcation Structure of a Kind of Digit Mapping[J]. Applied Mathematics and Mechanics, 1991, 12(2): 185-193. |
[20] | Zhou Rong-xing. The Global Structural Stability and Application of the Toroidal Differential Equations[J]. Applied Mathematics and Mechanics, 1988, 9(11): 1001-1013. |