ZHU Li, LI Xiu-hua, GOU Xing-ming. Optimal Obstacle Control Problem[J]. Applied Mathematics and Mechanics, 2008, 29(5): 505-514.
Citation: ZHU Li, LI Xiu-hua, GOU Xing-ming. Optimal Obstacle Control Problem[J]. Applied Mathematics and Mechanics, 2008, 29(5): 505-514.

Optimal Obstacle Control Problem

  • Received Date: 2007-08-15
  • Rev Recd Date: 2008-04-14
  • Publish Date: 2008-05-15
  • Some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality was discussed,and the existence,uniqueness and regularity of the optimal control problem were established.In addition,the approximate problem of the optimal obstacle problem also was studied.
  • [1]
    Adams D R,Lenhart S. An obstacle control problem with a source term[J].Appl Math Optim,2008,47(1):79-95.
    [2]
    Adams D R, Lenhart S. Optimal control of the obstacle for a parabolic variational inequality[J].J Math Anal Appl,2002,268:602-614. doi: 10.1006/jmaa.2001.7833
    [3]
    Adams D R, Lenhart S, Yong J.Optimal control of the obstacle for an elliptic variational inequality[J].Appl Math Optim,1998,38:121-140. doi: 10.1007/s002459900085
    [4]
    Barbu V.Analysis and Control of Nonlinear Infinite Dimensional Systems[M].Math Sci Engrg. 190. San Diego :Academic Press, 1993.
    [5]
    Chen Q. Indirect obstacle control problem for semilinear elliptic variational inequalities[J].SIAM J Control Optim,1999,38:138-158. doi: 10.1137/S0363012998343379
    [6]
    LOU Hong-wei.An optimal control problem governed by quasi-linear variational inequalities[J].SIAM J Control Optim,2003,41(4): 1229-1253.
    [7]
    Chen Q. Optimal control for semilinear evolutionary variational bilateral problems[J].J Math Anal Appl,2003,277(1):303-323. doi: 10.1016/S0022-247X(02)00569-3
    [8]
    Duvaunt G, Lions J L.Les Inequations en Mecanique et en Pysique[M].Paris:Dunod,1972.
    [9]
    Bergounioux M, Kunisch K.Augmented Lagrangian techniques for elliptic state constrained optimal control problems[J].SIAM J Control Optim,1997,35:1524-1543. doi: 10.1137/S036301299529330X
    [10]
    Bergounioux M. Optimal control of semilinear elliptic obstacle problems[J].J Nonlinear Convex Anal,2002,3(1):25-39.
    [11]
    Chipot M.Variational Inequalities and Flow in Porous Media[M].New York:Springer-Verlag,1984.
    [12]
    Bergounioux M, Lenhart S. Optimal control of bilateral obstacle problems[J].SIAM J Control Optim,2004,43(1):240-255. doi: 10.1137/S0363012902416912
    [13]
    Bucur D, Buttazzo G,Trabeschi P. An existence result for optimal obstacles[J].J Funct Anal,1999,162(1):96-119. doi: 10.1006/jfan.1998.3363
    [14]
    Buttazzo G, Wagner A. On the optimal shape of a rigid body supported by an elastic membrane[J].Nonlinear Anal,2000,39(1):47-63. doi: 10.1016/S0362-546X(98)00163-1
    [15]
    张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2003,85.
  • Relative Articles

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.3 %FULLTEXT: 18.3 %META: 80.6 %META: 80.6 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %China: 0.9 %China: 0.9 %上海: 0.9 %上海: 0.9 %北京: 2.4 %北京: 2.4 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %台州: 0.2 %台州: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %张家口: 2.9 %张家口: 2.9 %成都: 0.2 %成都: 0.2 %武汉: 0.1 %武汉: 0.1 %洛杉矶: 0.3 %洛杉矶: 0.3 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.3 %深圳: 0.3 %湖州: 0.1 %湖州: 0.1 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 6.3 %芒廷维尤: 6.3 %苏州: 0.1 %苏州: 0.1 %西宁: 77.8 %西宁: 77.8 %西安: 0.1 %西安: 0.1 %贵阳: 0.8 %贵阳: 0.8 %重庆: 0.3 %重庆: 0.3 %阳泉: 0.1 %阳泉: 0.1 %其他China上海北京南京南宁台州哥伦布张家口成都武汉洛杉矶洛阳深圳湖州石家庄芒廷维尤苏州西宁西安贵阳重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2997) PDF downloads(707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return