LUO Yan, FENG Min-fu. Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections[J]. Applied Mathematics and Mechanics, 2008, 29(2): 157-168.
Citation: LUO Yan, FENG Min-fu. Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections[J]. Applied Mathematics and Mechanics, 2008, 29(2): 157-168.

Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections

  • Received Date: 2007-06-28
  • Rev Recd Date: 2008-01-03
  • Publish Date: 2008-02-15
  • A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations based on local projections was derived.The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition.An error estimate was obtained.
  • loading
  • [1]
    Reed W H,Hill T R.Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR -73-479,Los Alamos Scientific Laboratory,1973.
    [2]
    Cockburn B,Shu C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation lawsⅡ:general framework[J].Math Comp,1989,52(186):411-435.
    [3]
    Cockburn B,Lin S Y.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:one -dimensional systems[J].J Comp Phys,1989,84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
    [4]
    Cockburn B,Shu C W.TVB Runge-Kutta discontinuous Galerkin methods for conservation laws V:Multidimensional systems[J].J Comp Phys,1998,144(1):199-224.
    [5]
    Arnold D,Brezzi F,Cockburn B,et al.Unified analysis of discontinuous Galerkin methods for elliptic problem[J].SIAM J Numer Anal,2002,39(5):1749-1779. doi: 10.1137/S0036142901384162
    [6]
    Brezzi F,Manzini G,Marini D,et al.Discontinuous Galerkin approximation for elliptic problems[J].Numer Methods Partial Differential Equations,2000,16(4):365-378. doi: 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
    [7]
    Babuska I,Zlamal M. Noncomforming elements in the finite element method with penalty[J].SIAM J Numer Anal,1973,10(2):863-875. doi: 10.1137/0710071
    [8]
    Cockburn B,Kanschat G,Schotzau,et al.Local discontinuous Galerkin methods for the Stokes system[J].SIAM J Numer Anal,2002,40(1):319-343. doi: 10.1137/S0036142900380121
    [9]
    YE Xiu.Discontinuous stable elements for the incompressible flow[J].Advances Comp Math,2004,20:333-345. doi: 10.1023/A:1027363218427
    [10]
    骆艳,冯民富.Stokes方程的稳定化间断有限元法[J]. 计算数学,2006,28(2):163-174.
    [11]
    Bassi F,Rebay S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].J Comp Phys,1997,131(2):267-279. doi: 10.1006/jcph.1996.5572
    [12]
    Bassi F,Rebay S.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J].Internat J Numer Methods Fluids,2002,40(2):197-207. doi: 10.1002/fld.338
    [13]
    Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations[M].Lecture Notes in Math.Vol 749.Berlin and New York:Spring-Verlag,1981.
    [14]
    Hughes T J,Brooks A. A multidimensional upwind scheme with bo crosswind diffusion[A].In:Hughes T J,Ed.Finite Element Methods for Convection Dominated Flows[C].34.New York:ASME,1979,19-35.
    [15]
    Johnson C. Steamline diffusion methods for problems in fluid mechanics[A].In:Gallagher R H, Carey G F, Oden J T,Zienkiewicz O C,Eds.Finite Element in Fluids[C].London;New York:John Wiley and Sons,1986.
    [16]
    Brook A N, Hughes T J R.Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J].Comp Methods Appl Mech Engrg,1982,32(2):199-259. doi: 10.1016/0045-7825(82)90071-8
    [17]
    Hansbo P. A Velocity-pressure streamline diffusion finte element method for incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Engrg,1990,84(2):175-192. doi: 10.1016/0045-7825(90)90116-4
    [18]
    Johnson C,Saranen J.Streamline diffusion methods for the incompressible Euler and Navier-Stokes equationa[J].Math Comp,1986,47(175):1-18. doi: 10.1090/S0025-5718-1986-0842120-4
    [19]
    Tabata M. On a conservative upwind finite element scheme for convective-diffusion equations[J].RAIRO Anal Numer,1981,15:3-25.
    [20]
    Franca L P,Hughes T J. Two classes of mixed finite element methods[J].Comput Methods Appl Mech Engrg,1988,69(1):89-129. doi: 10.1016/0045-7825(88)90168-5
    [21]
    ZHOU Tian-xiao,FENG Min-fu.A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Math Comp,1993,60(202): 531-543. doi: 10.1090/S0025-5718-1993-1164127-6
    [22]
    Bochev P, Dohrmann C,Gunzburger M. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM J Numer Anal,2006,44(1):82-101. doi: 10.1137/S0036142905444482
    [23]
    Blasco J,Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J].Comp Methods Appl Mech Engrg,2000,182(3):277-300. doi: 10.1016/S0045-7825(99)00194-2
    [24]
    Bruce Kellogg R,LIU Bi-yue. A finite element method for the compressible Stokes equation[J].SIAM Numer Anal,1996,33(2):780-788. doi: 10.1137/0733039
    [25]
    Bruce R,Liu B.A penalized finite element method for a compressible Stokes system[J].SIAM J Numer Anal,1997,34(3):1093-1105. doi: 10.1137/S0036142994273276
    [26]
    Lesaint P,Raviart P A. On a finite element method for solving the neutron transport equation[A].In:C de Boor,Ed.Mathematical Aspects of Finite Elements in Paritial Differential Equations[C].New York:Academic Press,1974,89-145.
    [27]
    Braack M,Burman E. Local projection stabilization for the ossen problem and its interpretation as a variational multiscale method[J].SIAM J Numer Anal,2006,43(6):2544-2566. doi: 10.1137/050631227
    [28]
    Falk R S,Richter G R. Local error estimates for a finite element for hyperbolic and covection-diffusion equations[J].SIAM J Numer Anal,1992,29(2):730-754. doi: 10.1137/0729046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3563) PDF downloads(945) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return