Citation: | HONG Wen-qiang, XU Ji-qing, XU Xi-bin, ZHANG Chun, ZHOU Shi-liang. The Radial Basis Function Approximation Method for Solving Bratu-Type Equations[J]. Applied Mathematics and Mechanics, 2016, 37(6): 617-625. doi: 10.3879/j.issn.1000-0887.2016.06.007 |
[1] |
Abolarin O E. New improved variational homotopy perturbation method for Bratu-type problems[J]. American Journal of Computational Mathematics,2013,3(2): 110-113.
|
[2] |
Syam M I, Hamdan A. An efficient method for solving Bratu equations[J]. Applied Mathematics and Computation,2006,176(2): 704-713.
|
[3] |
Boyd J P. An analytical and numerical study of the two-dimensional Bratu equation[J]. Journal of Scientific Computing,1986,1(2): 183-206.
|
[4] |
Boyd J P. Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one dimensional Bratu equation[J]. Applied Mathematics and Computation,2003,143(2/3): 189-200.
|
[5] |
Jacobson J, Schmitt K. The Liouville-Bratu-Gelfand problem for radial operators[J]. Journal of Differential Equations,2002,184(1): 283-298.
|
[6] |
E·克鲁泽. 非线性动力学系统的数值研究[M]. 凌复华, 译. 上海: 上海交通大学出版社, 1989.(Kreuzer E. Numerische Untersuchung Nichtlinearer Dynamischer Systeme [M]. LING Fu-hua, transl. Shanghai: Shanghai Jiao Tong University Press, 1989.(Chinese version))
|
[7] |
胡海岩. 应用非线性动力学[M]. 北京: 航空工业出版社, 2000.(HU Hai-yan. Applied Nonlinear Transient Dynamical [M]. Beijing: Aviation Industry Press, 2000.(in Chinese))
|
[8] |
刘向军, 石磊, 徐旭常. 稠密气固两相流欧拉-拉格朗日法的研究现状[J]. 计算力学学报, 2007,24(2): 166-172.(LIU Xiang-jun, SHI Lei, XU Xu-chang. Activities of dense particle-gas two-phase flow modeling in Eulerian-Lagrangian approach[J]. Chinese Journal of Computational Mechanics,2007,24(2): 166-172.(in Chinese))
|
[9] |
刘石, 陈德祥, 冯永新, 徐自力, 郑李坤. 等几何分析的多重网格共轭梯度法[J]. 应用数学和力学, 2014,35(6): 630-639.(LIU Shi, CHEN De-xiang, FENG Yong-xin, XU Zi-li, ZHENG Li-kun. A multigrid preconditioned conjugate gradient method for isogeometric analysis[J]. Applied Mathematics and Mechanics,2014,35(6): 630-639.(in Chinese))
|
[10] |
陈全发, 肖爱国. Runge-Kutta-Nystrm方法的若干新性质[J]. 计算数学, 2008,30(2): 201-212.(CHEN Quan-fa, XIAO Ai-guo. Some new properties of Runge-Kutta-Nystr?m methods[J]. Mathematic Numerica Sinica,2008,30(2): 201-212.(in Chinese))
|
[11] |
樊文欣, 杨桂通, 岳文忠. 基于ADAMS的发动机动力学通用分析模型[J]. 应用基础与工程科学学报, 2009,17(S1): 172-178.(FAN Wen-xin, YANG Gui-tong, YUE Wen-zhong. The dynamic universal analysis model of engine based on ADAMS[J]. Journal of Basic Science and Engineering,2009,17(S1): 172-178.(in Chinese))
|
[12] |
Aregbesola Y A S. Numerical solution of Bratu problem using the method of weighted residual[J]. Electronic Journal of Southern African Mathematical Sciences,2003,3(1): 652-663.
|
[13] |
吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002,19(2): 1-12.(WU Zong-min. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Journal of Engineering Mathematics,2002,19(2): 1-12.(in Chinese))
|
[14] |
陈文, 傅卓佳, 魏星. 科学与工程计算中的径向基函数方法[M]. 北京: 科学出版社, 2014.(CHEN Wen, FU Zhuo-jia, WEI Xing. The Radial Basis Function Methods in Science and Engineering Mathmatics [M]. Beijing: Science Press, 2014.(in Chinese))
|
[15] |
马利敏. 径向基函数逼近中的若干理论、方法及其应用[D]. 博士学位论文. 上海: 复旦大学, 2009.(MA Li-min. Some theory, methods and application in RBF approaching[D]. PhD Thesis. Shanghai: Fudan University, 2009.(in Chinese))
|
[16] |
Lin J, Chen W, Sze K Y. A new radial basis function for Helmholtz problems[J]. Engineering Analysis With Boundary Elements,2012,36(12): 1923-1930.
|
[17] |
Fu Z J, Chen W, Ling L. Method of approximate particular solutions for constant- and variable-order fractional diffusion models[J]. Engineering Analysis With Boundary Elements,2015,57: 37-46.
|
[18] |
徐绩青, 李正良, 吴林键. 基于径向基函数逼近的结构动力响应计算方法[J]. 应用数学和力学, 2014,35(5): 533-541.(XU Ji-qing,LI Zheng-liang,WU Lin-jian. A calculation method for structural dynamic responses based on the approximation theory of radial basis function[J]. Applied Mathematics and Mechanics,2014,35(5): 533-541.(in Chinese))
|
[19] |
李岩汀, 许锡宾, 周世良, 徐绩青. 基于径向基函数逼近的非线性动力系统数值求解[J]. 应用数学和力学, 2016,37(3): 311-318.(LI Yan-ting, XU Xi-bin, ZHOU Shi-liang, XU Ji-qing. A numerical approximation method for nonlinear dynamic systems based on radial basis functions[J]. Applied Mathematics and Mechanics,2016,37(3): 311-318.(in Chinese))
|
[20] |
Abbasbandy S, Hashemi M S, Liu C-S. The Lie-group shooting method for solving the Bratu equation[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(11): 4238-4249.
|
[21] |
Deeba E, Khuri S A, XIE Shi-shen. An algorithm for solving boundary value problems[J]. Journal of Computational Physics,2000,159(2): 125-138.
|
[22] |
Khuri S A. A new approach to Bratu’s problem[J]. Applied Mathematics and Computation,2004,147(1): 131-136.
|
[23] |
Caglar H, Caglar N, ?zer M, Valaristos A, Anagnostopoulos A N. B-spline method for solving Bratu’s problem[J]. International Journal of Computer Mathematics,2010,87(8): 1885-1891.
|
[24] |
Jalilian R. Non-polynomial spline method for solving Bratu’s problem[J]. Computer Physics Communications,2010,181(11): 1862-1872.
|