Citation: | CHENG Chuan-liang, GONG Bo, QIAN Jin. Mechanical Responses of Crosslinked Biopolymer Networks[J]. Applied Mathematics and Mechanics, 2016, 37(5): 441-458. doi: 10.3879/j.issn.1000-0887.2016.05.001 |
[1] |
Alberts B, Johnson A, Lewis J, Roberts M R K, Walter P.Molecular Biology of the Cell[M]. 4th ed. New York: Garland Science Press, 2002.
|
[2] |
Desprat N, Guiroy A, Asnacios A. Microplates-based rheometer for a single living cell[J].Review of Scientific Instruments,2006,77(5): 055111-055119.
|
[3] |
Kollmannsberger P, Fabry B. High-force magnetic tweezers with force feedback for biological applications[J].Review of Scientific Instruments,2007,78(11): 114301-114306.
|
[4] |
Crick F H C, Hughes A F W. The physical properties of cytoplasm: a study by means of the magnetic particle method—part I: experimental[J].Experimental Cell Research,1950,1(1): 37-80.
|
[5] |
Howard J, Clark R L.Mechanics of Motor Proteins and the Cytoskeleton [M]. Sunderland M A: Sinauer Press, 2001.
|
[6] |
Jackson W M, Jaasma M J, Tang R Y, Keaveny T M. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells[J].American Journal of Physiology Cell Physiology,2008,295(4): C1007-C1015.
|
[7] |
苗龙. 细胞运动、细胞迁移与细胞骨架研究进展[J]. 生物物理学报, 2007,23(4): 281-289. (MIAO Long. Recent progresses on the cellular motility, cell migration and cytoskeleton[J].Acta Biophysica Sinca,2007,23(4): 281-289.(in Chinese))
|
[8] |
邓林红, 陈诚. 细胞骨架的普遍性动力学行为[J]. 医用生物力学, 2011,26(3): 193-200.(DENG Lin-hong, CHEN Cheng. Universal dynamics behaviors of the cytoskeleton[J].Journal of Medical Biomechanics,2011,26(3): 193-200.(in Chinese))
|
[9] |
Hatami-Marbini H, Mofrad M R K.Rheology and Mechanics of the Cytoskeleton [M]. New York: Springer, 2015.
|
[10] |
Lieleg O, Claessens M M A E, Bausch A R. Structure and dynamics of cross-linked actin networks[J].Soft Matter,2010,6(2): 218-225.
|
[11] |
Unterberger M J, Holzapfel G A. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales[J].Biomechanics and Modeling in Mechanobiology,2014,13(6): 1155-1174.
|
[12] |
De La Cruz E M, Gardel M L. Actin mechanics and fragmentation[J].Journal of Biological Chemistry,2015,290(28): 17137-17144.
|
[13] |
WANG Ning, Ingber D E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry[J].Biochemistry and Cell Biology,1995,73(7/8): 327-335.
|
[14] |
Gardel M L, Shin J H, MacKintosh F C, Mahadevan L, Matsudaira P, Weitz D A. Elastic behavior of cross-linked and bundled actin networks[J].Science,2004,304(5675): 1301-1305.
|
[15] |
Storm C, Pastore J J, MacKintosh F C, Lubensky T C, Janmey P A. Nonlinear elasticity in biological gels[J].Nature,2005,435(7039): 191-194.
|
[16] |
Trepat X, DENG Lin-hong, An S S, Navajas D, Tschumperlin D J, Gerthoffer W T, Butler J P, Fredberg J J. Universal physical responses to stretch in the living cell[J].Nature,2007,447(7144): 592-595.
|
[17] |
Kang H, WEN Qi, Janmey P A, Tang J X, Conti E, Mackintosh F C. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels[J].Journal of Physical Chemistry B,2009,113(12): 3799-3805.
|
[18] |
Kasza K E, Broedersz C P, Koenderink G H, Lin Y C, Messner W, Millman E A, Nakamura F, Stossel T P, Mackintosh F C, Weitz D A. Actin filament length tunes elasticity of flexibly cross-linked actin networks[J].Biophysical Journal,2010,99(4): 1091-1100.
|
[19] |
Broedersz C P, Kasza K E, Jawerth L M, Münster S, Weitz D A, Mackintosh F C. Measurement of nonlinear rheology of cross-linked biopolymer gels[J].Soft Matter,2010,6(17): 4120-4127.
|
[20] |
Chaudhuri O, Parekh S H, Fletcher D A. Reversible stress softening of actin networks[J].Nature,2007,445(7125): 295-298.
|
[21] |
DiDonna B A, Levine A J. Unfolding cross-linkers as rheology regulators in F-actin networks[J].Physical Review E,2007,75(4): 041909.
|
[22] |
Wolff L, Fernandez P, Kroy K. Resolving the stiffening-softening paradox in cell mechanics[J].Plos One,2012,7(7): e40063.
|
[23] |
LIN Yuan, Wei X, Qian J, Sze K Y, Shenoy V B. A combined finite element-Langevin dynamics (FEM-LD) approach for analyzing the mechanical response of bio-polymer networks[J].Journal of the Mechanics and Physics of Solids,2014,62: 2-18.
|
[24] |
WEI Xi, ZHU Qian, QIAN Jin, LIN Yuan, Shenoy V B. Response of biopolymer networks governed by the physical properties of cross-linking molecules[J].Soft Matter,2016,12: 2537-2541.
|
[25] |
Machesky L M, Mullins R D, Higgs H N, Kaiser D A, Blanchoin L, May R C, Hall M E, Pollard T D. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex[J].Proceedings of the National Academy of Sciences,1999,96(7): 3739-3744.
|
[26] |
Remedios C G D, Chhabra D, Dedova I V, Berry D A, Kekic M, Tsubakihara M, Nosworthy N J. Actin binding proteins: regulation of cytoskeletal microfilaments[J].Physiological Reviews,2003,83(2): 433-473.
|
[27] |
Gunning P W, Ghoshdastider U, Whitaker S, Popp D, Robinson R C. The evolution of compositionally and functionally distinct actin filaments[J].Journal of Cell Science,2015,128(11): 2009-2019.
|
[28] |
Mücke N, Kreplak L, Kirmse R, Wedig T, Herrmann H, Aebi U, Langowski J. Assessing the flexibility of intermediate filaments by atomic force microscopy[J].Journal of Molecular Biology,2004,335(5): 1241-1250.
|
[29] |
JI Xiang-ying, FENG Xi-qiao. Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules[J].Physical Review E,2011,84(3): 031933.
|
[30] |
穆罕默德·塔杰, 张俊乾. 弹性介质中正交各向异性微管的屈曲分析[J]. 应用数学和力学, 2011,32(3): 279-285.(Muhammad T, ZHANG Jun-qian. Buckling of embedded microtubules in elastic medium[J].Applied Mathematics and Mechanics,2011,32(3): 279-285.(in Chinese)).
|
[31] |
Gittes F, Mickey B, Nettleton J, Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape[J].Journal of Cell Biology,1993,120(4): 923-934.
|
[32] |
Isambert H, Venier P, Maggs A C, Fattoum A, Kassab R, Pantaloni D, Carlier M F. Flexibility of actin filaments derived from thermal fluctuations: effect of bound nucleotide, phalloidin and regulatory proteins[J].The Journal of Biological Chemistry,1995,270(19): 11437-11444.
|
[33] |
Van Dillen T, Onck P R, Van der Giessen E. Models for stiffening in cross-linked biopolymer networks: a comparative study[J].〖QX(Y12#〗 Journal of the Mechanics and Physics of Solids〖QX)〗, 2008,56(6): 2240-2264.
|
[34] |
Fallqvist B, Kulachenko A, Kroon M. Modelling of cross-linked actin networks—influence of geometrical parameters and cross-link compliance[J].Journal of Theoretical Biology,2014,350: 57-69.
|
[35] |
Marko J F, Siggia E D. Statistical mechanics of supercoiled DNA[J].Physical Review E,1995,52(3): 2912-2938.
|
[36] |
Ferrer J M, Hyungsuk L, Jiong C, Benjamin P, Fumihiko N, Kamm R D, Lang M J. Measuring molecular rupture forces between single actin filaments and actin-binding proteins[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(27): 9221-9226.
|
[37] |
Sharma A, Sheinman M, Heidemann K M, MacKintosh F C. Elastic response of filamentous networks with compliant crosslinks[J].Physical Review E,2013,88(5): 052705.
|
[38] |
Abhilash A S, Purohit P K, Joshi S P. Stochastic rate-dependent elasticity and failure of soft fibrous networks[J].Soft Matter,2012,8(26): 7004-7016.
|
[39] |
曲东明, 韩梅, 温进坤. 肌动蛋白结合蛋白[J]. 中国细胞生物学学报, 2007,29(2): 219-224.(QU Dong-ming, HAN Mei, WEN Jin-kun. Actin binding protein[J].Chinese Journal of Cell Biology,2007,29(2): 219-224.(in Chinese))
|
[40] |
Chen P, Shenoy V B. Strain stiffening induced by molecular motors in active crosslinked biopolymer networks[J].Soft Matter,2011,7(2): 355-358.
|
[41] |
Plaza G R, Uyeda T Q P, Mirzaei Z, Simmons C A. Study of the influence of actin-binding proteins using linear analyses of cell deformability[J].Soft Matter,2015,11(27): 5435-5446.
|
[42] |
Uyeda T Q P, Iwadate Y, Umeki N, Nagasaki A, Yumura S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain[J].Plos One,2011,6(10): e26200.
|
[43] |
Mizuno D, Tardin C, Schmidt C F, Mackintosh F C. Nonequilibrium mechanics of active cytoskeletal networks[J].Science,2007,315(5810): 370-373.
|
[44] |
Fletcher D A, Müllins D. Cell mechanics and the cytoskeleton[J].Nature,2010,463(7280): 485-492.
|
[45] |
Pritchard R H, Huang Y Y S, Terentjev E M. Mechanics of biological networks: from the cell cytoskeleton to connective tissue[J].Soft Matter,2014,10(12): 1864-1884.
|
[46] |
Lieleg O, Claessens M M A E, Luan Y, Bausch A R. Transient binding and dissipation in cross-linked actin networks[J].Physical Review Letters,2008,101(10): 108101.
|
[47] |
Müller K W, Bruinsma R F, Lieleg O, Bausch A R, Wall W A, Levine A J. Rheology of semiflexible bundle networks with transient linkers[J].Physical Review Letters,2014,112(23): 238102.
|
[48] |
Lee H, Pelz B, Ferrer J M, Kim T, Lang M J, Kamm R D. Cytoskeletal deformation at high strains and the role of cross-link unfolding or unbinding[J].Cellular and Molecular Bioengineering,2009,2(1): 28-38.
|
[49] |
Koenderink G H, Dogic Z, Nakamura F, Bendix P M, MacKintosh F C, Hartwig J H, Stossel T P, Weitz D A. An active biopolymer network controlled by molecular motors[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(36): 15192-15197.
|
[50] |
Kollmannsberger P, Fabry B. Linear and nonlinear rheology of living cells[J].Annual Review of Materials Research,2011,41(1): 75-97.
|
[51] |
Palierne J F. Scale-dependent nonaffine elasticity of semiflexible polymer networks[J].Physical Review Letters,2014,112(8): 195-201.
|
[52] |
FENG She-chao, Thorpe M F, Garboczi E. Effective-medium theory of percolation on central-force elastic networks[J].Physical Review B,1985,31(1): 276-280.
|
[53] |
Broedersz C P, Storm C, MacKintosh F C. Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers[J].Physical Review Letters,2008,101(11): 118103.
|
[54] |
Broedersz C P, MacKintosh F C. Modeling semiflexible polymer networks[J].Review of Modern Physics,2014,86(3): 995-1036.
|
[55] |
Onck P R, Koeman T, Van Dillen T, Van der Giessen E. Alternative explanation of stiffening in cross-linked semiflexible networks[J].Physical Review Letters,2005,95(17): 178102.
|
[56] |
Lindstrm S B, Kulachenko A, Jawerth L M, Vader D A. Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer networks[J].Soft Matter,2013,9(30): 7302-7313.
|
[57] |
Kurniawan N A, Enemark S, Rajagopalan R. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks[J].Journal of Chemical Physics,2012,136(6): 065101.
|
[58] |
Yang Y, Bai M, Klug W S, Levine A J, Valentine M T. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding[J].Soft Matter,2013,9(2): 383-393.
|
[59] |
Vaca C, Shlomovitz R, Yang Y L, Valentine M T, Levine A J. Bond breaking dynamics in semiflexible networks under load[J].Soft Matter,2015,11(24): 4899-4911.
|
[60] |
Wilhelm J, Frey E. Elasticity of stiff polymer networks[J].Physical Review Letters,2003,91(10): 108103.
|
[61] |
Head D A, Levine A J, MacKintosh F C. Deformation of cross-linked semiflexible polymer networks[J].Physical Review Letters,2003,91(10): 108102.
|
[62] |
Head D A, Levine A J, Mackintosh F C. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks[J].Physical Review E,2003,68(6): 061907.
|
[63] |
Levine A J, Head D A, Mackintosh F C. The deformation field in semiflexible networks[J].Journal of Physics Condensed Matter,2004,16(22): 2079-2088.
|
[64] |
Huisman E M, Van Dillen T, Onck P R, Van der Giessen E. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior[J].Physical Review Letters,2007,99(20): 208103.
|
[65] |
Zagar G, Onck P R, Van der Giessen E. Two fundamental mechanisms govern the stiffening of cross-linked networks[J].Biophysical Journal,2015,108(6): 1470-1479.
|
[66] |
Bell G I. Models for specific adhesion of cells to cells[J].Science,1978,200(4342): 618-627.
|
[67] |
Bell G I, Dembo M, Bongrand P. Cell-adhesion. Competition between nonspecific repulsion and specific bonding[J].Biophysical Journal,1984,45(6): 1051-1064.
|
[68] |
Abhilash A S, ZHANG Liang, Stiefel J, Purohit P K, Joshi S P. Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks[J].Physical Review E,2014,89(2): 022607-1-022607-9.
|
[69] |
Yamazaki M, Shou F, Ito T. Mechanical response of single filamin A (ABP-280) molecules and its role in the actin cytoskeleton[J].Journal of Muscle Research and Cell Motility,2003,23(5/6): 525-534.
|
[70] |
Chen P. Anomalous normal stresses in biopolymer networks with compliant cross-links[J].Europhysics Letters,2014,105(3): 38003.
|
[71] |
JIN Tao, Stanciulescu I. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure[J].Biomechanics and Modeling in Mechanobiology,2015: 1-14.doi: 10.1007/s10237-015-0725-6.
|
[72] |
Matsushita S, Adachi T, Inoue Y, Hojo M, Sokabe M. Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis[J].Journal of Biomechanics,2010,43(16): 3162-3167.
|
[73] |
Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments[J].Journal of Biomechanics,2011,44(9): 1776-1781.
|
[74] |
Matsushita S, Inoue Y, Adachi T. Quantitative analysis of extension-torsion coupling of actin filaments[J].Biochemical and Biophysical Research Communications,2012,420(4): 710-713.
|
[75] |
Chu J W, Voth G A. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations[J].Biophysical Journal,2006,90(5): 1572-1582.
|
[76] |
Li T, Gu Y T, Feng X Q, Yarlagadda P K D V, Oloyede A. Hierarchical multiscale model for biomechanics analysis of microfilament networks[J].Journal of Applied Physics,2013,113(19): 320-324.
|
[77] |
Astrm J A, Kumar P B S, Vattulainen I, Karttunen M. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks[J].Physical Review E,2008,77(5): 051913.
|
[78] |
Hoffmann C, Moes D, Dieterle M, Neumann K, Moreau F, Tavares F A, Dumas D, Steinmetz A, Thomas C. Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1[J].Journal of Cell Science,2014,127(3): 583-598.
|
[79] |
Weichsel J, Schwarz U S. Two competing orientation patterns explain experimentally observed anomalies in growing actin networks[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(14): 6304-6309.
|
[80] |
Weichsel J, Schwarz U S. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry[J].New Journal of Physics,2013,15(10): 35006-35031.
|