LIU Fang, SHI Wei-ping. Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004
Citation: LIU Fang, SHI Wei-ping. Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1158-1166. doi: 10.3879/j.issn.1000-0887.2015.11.004

Simulation of the Nonlinear Heat Conduction Equation With the Lattice Boltzmann Method

doi: 10.3879/j.issn.1000-0887.2015.11.004
Funds:  The National Natural Science Foundation of China(11401046)
  • Received Date: 2015-07-10
  • Rev Recd Date: 2015-08-20
  • Publish Date: 2015-11-15
  • A lattice Boltzmann model for the heat conduction equation with a nonlinear source term and a nonlinear diffusion term was presented. 2 differential operators related to the source term distribution function were added to the evolution equation, on which the ChapmanEnskog expansion was carried out. Then, through some further improvement of the evolution equation the macroscopic differential equation was recovered in 2 schemes with highorder truncation errors. Detailed numerical simulations of the nonlinear heat conduction equation with different parameter selections were performed. The numerical results agree well with the exact solutions. This model can also be directly used to numerically solve other partial differential equations in similar forms.
  • loading
  • [1]
    Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications[J]. Physics Reports,1992,222(3): 145-197.
    [2]
    CHEN Shi-yi, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30: 329-364.
    [3]
    Qian Y H, Succi S, Orszag S A. Recent advances in lattice Boltzmann computing[J]. Annual Reviews of Computational Physics,1995,3: 195-242.
    [4]
    Dawson S P, Chen S, Doolen G D. Lattice Boltzmann computations for reaction-diffusion equations[J].The Journal of Chemical Physics,1993,98(2): 1514-1523.
    [5]
    Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation[J]. Advances in Water Resources,2005,28(11): 1171-1195.
    [6]
    Shi B, Guo Z. Lattice Boltzmann model for nonlinear convection-diffusion equations[J].Physical Review E,2009,79(1/2): 016701.
    [7]
    Liu F, Shi W P. Numerical solutions of two-dimensional Burgers’equations by lattice Boltzmann method[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(1): 150-157.
    [8]
    YANG Xu-guang, SHI Bao-chang, CHAI Zhen-hua. Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model[J].Computers & Mathematics With Applications,2014,68(12): 1653-1670.
    [9]
    谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子 Boltzmann模拟[J]. 应用数学和力学, 2014,35(3): 247-253.(XIE Chi-yu, ZHANG Jian-ying, WANG Mo-ran. Lattice Boltzmann simulation of droplet evaporation on flat solid surface[J].Applied Mathematics and Mechanics,2014,35(3): 247-253.(in Chinese))
    [10]
    黄俊涛, 张力, 雍稳安, 王沫然. 格子Boltzmann方法解扩散方程的复杂边界条件研究[J]. 应用数学和力学, 2014,35(3): 305-312.(HUANG Jun-tao, ZHANG Li, YONG Wen-an, WANG Mo-ran. On complex boundary conditions of the lattice Boltzmann method for the diffusion equations[J].Applied Mathematics and Mechanics,2014,35(3): 305-312.(in Chinese))
    [11]
    Wazwaz A-M. The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations[J]. Applied Mathematics and Computation,2005,169(1): 321-338.
    [12]
    Becker M.Nonlinear transient heat conduction using similarity groups[J]. Journal of Heat Transfer,2000,122(1): 33-39.
    [13]
    Parlange J Y, Hogarth W L, Parlange M B,Haverkamp R, Barry D A, Ross P J, Steenhuis T S. Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions[J].Transport in Porous Media,1998,30(1): 45-55.
    [14]
    Zel’Dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[M]. New York: Academic Press, 1966.
    [15]
    GUO Zhao-li, ZHENG Chu-guang, SHI Bao-chang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics B,2002,11(4): 366-374.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1858) PDF downloads(768) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return