Citation: | ZOU Li, WANG Zhen, ZONG Zhi, ZOU Dong-yang, ZHANG Shuo. Solving shock wave with discontinuity by enhanced differential transform method (EDTM)[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1465-1476. doi: 10.3879/j.issn.1000-0887.2012.12.008 |
[1] |
Natfeg A H. Introduction to Perturbation Techniques[M]. New York: John Wiley & Sons, 1981.
|
[2] |
Natfeg A H. Problems in Perturbation[M]. New York: John Wiley & Sons, 1985.
|
[3] |
Lyapunov A M. General Problem on Stability of Motion[M]. London: Taylor & Francis, 1992.
|
[4] |
Adomain G. Nonlinear stochastic differential equations[J]. Journal Mathematical Analysis and Application, 1976, 55(2): 441-452.
|
[5] |
Adomain G. A global method for solution of complex systems[J]. Mathematical Model, 1984, 5(4): 521-568.
|
[6] |
Adomain G. Solving Frontier Problems of Physics: the Decomposition Method[M]. Boston and London: Kluwer Academic Publishers, 1994.
|
[7] |
廖世俊.同伦分析方法:一种新的求解非线性问题的近似解析方法[J]. 应用数学和力学, 1998, 19(10): 885-890.(LIAO Shi-jun. Homotopy analysis method: a new analytic method for nonlinear problems[J].Applied Mathematics and Mechanics(English Edition), 1998, 19(10): 957-962.)
|
[8] |
廖世俊.超越摄动:同伦分析方法导论[M]. 科学出版社, 2007.(LIAO Shi-jun. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Science Press, 2007.(in Chinese))
|
[9] |
卢东强. 自由表面与粘性尾迹的相互作用[J]. 应用数学和力学, 2004, 25(6): 591598.(LU Dong-qiang. Interaction of viscous waves with a free surface[J]. Applied Mathematics and Mechanics(English Edition), 2004, 25(6): 647-655.)
|
[10] |
卢东强, 戴世强, 张宝善. 一个二流体系统中非线性水波的Hamilton描述[J]. 应用数学和力学, 1999, 20(4): 331-336.(LU Dong-qiang, DAI Shi-qiang, ZHANG Bao-shan. Hamiltonian formulation of nonlinear water waves in a twofluid system[J]. Applied Mathematics and Mechanics(English Edition), 1999, 20(4): 343-349.)
|
[11] |
Zhou J K. Differential Transform and Its Applications for Electrical Circuits[M]. Wuhan, China: Huazhong University Press, 1986.
|
[12] |
Ravi Kanth A S V, Aruna K. Differential transform method for solving the linear and nonlinear KleinGordon equation[J]. Computer Physics Communication, 2009, 180(5): 708-711.
|
[13] |
Chen C K, Ho S H. Solving partial differential equations by twodimensional differential transform method[J]. Applied Mathematics Computation, 1999, 106(2/3): 171-179.
|
[14] |
Jang M J, Chen C L, Liu Y C. Two-dimensional differential transformation method for partial differential equation[J]. Applied Mathematics Computation, 2001, 121(2/3): 261-270.
|
[15] |
Adbel-Halim Hassan I H. Different applications for the differential transformation in the differential equations[J]. Applied Mathematics Computation, 2002, 129(2/3): 183-201.
|
[16] |
Ayaz F. On the two-dimensional differential transform method[J]. Applied Mathematics Computation, 2003, 143(2/3): 361-374.
|
[17] |
Ayaz F. Solutions of the system of differential equations by differential transform method[J]. Applied Mathematics Computation, 2004, 147(2): 547-567.
|
[18] |
Wang Z, Zou L, Zhang H Q. Applying homotopy analysis method for solving differentialdifference equation [J]. Physics Letters A, 2007, 369(1): 77-84.
|
[19] |
Zou L, Zong Z, Wang Z, He L. Solving the discrete KdV equation with homotopy analysis method[J]. Physics Letters A, 2007, 370(3/4): 287-294.
|
[20] |
Adbel-Halim Hassan I H. Comparison differential transformation technique with adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solutions & Fractals, 2008, 36(1): 53-65.
|
[21] |
Figen K O, Ayaz F. Solitary wave solutions for the KdV and mKdV equations by differential transform method[J]. Chaos, Solution & Fractals, 2009, 41(1): 464-472.
|
[22] |
Cole J D.On a quasi-linear parabolic equation occurring in aerodynamics[J]. Quart Applied Mathematics, 1951, 9: 225-236.
|
[23] |
Bateman H. Some recent researches on the motion of fluids[J]. Monthly Weather Review, 1915, 43(4): 163-170.
|
[24] |
Burgers J M. A mathematical model illustrating the theory of turbulence[J]. Advance Applied Mechanics, 1948, 1: 171-199.
|
[25] |
Zhang X H, Ouyang J, Zhang L. Elementfree characteristic Galerkin method for Burgers equation[J]. Engineering Analysis with Boundary Elements, 2009, 33(3): 356-362.
|
[26] |
Kutluay S, Eeen A, Dag I. Numerical solutions of the Burgers equation by the leastsquares quadratic B-spline finite element method[J]. Journal of Computational and Applied Mathematics, 2004, 167(1): 21-33.
|
[27] |
Whitham G B. Linear and Nonlinear Waves[M]. New York: John Wiley & Sons, 1974.
|
[28] |
Rosenau P, Hyman J M. Compactons: solitons with finite wavelength[J]. Physical Review Letters, 1993, 70(5): 564567.
|
[29] |
Tian L X, Yin J L. Shockpeakon and shockcompacton solutions for K(p,q)-equation by variational iteration method[J]. Journal of Mathematical Analysis and Applications, 2007, 207(1): 46-52.
|
[30] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11): 1661-1664.
|