Citation: | MA Cheng, LI Xun, YIU Ka-Fai Cedric, ZHANG Lian-sheng. A New Exact Penalty Function for Solving Constrained Finite Min-Max Problems[J]. Applied Mathematics and Mechanics, 2012, 33(2): 250-264. doi: 10.3879/j.issn.1000-0887.2012.02.010 |
[1] |
Rustem B, Howe M A.Algorithms for Worst-Case Design With Applications to Risk Management[M]. Princeton: Princeton University Press, 2001.
|
[2] |
Zhu S S, Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management[J]. Operations Research, 2009, 57(5): 1155-1168.
|
[3] |
Lemarechal C. Nondifferentiable optimization. Nemhauser G L, Rinnooy Kan A H G, Todd M J. Handbooks in Operations Research and Management Science. Vol 1: Optimization[M]. Amsterdam, Netherlands: North-Holland, 1989.
|
[4] |
Rockafellar R T. Linear-quadric programming and optimal control[J]. SIAM Journal on Control and Optimization, 1987, 25(3): 781-814.
|
[5] |
Rockafellar R T. Computational schemes for large-scale problems in extended linear-quadratic programming[J]. Mathematical Programming, 1990, 48(1/3): 447-474.
|
[6] |
Gaudioso M, Monaco M F. A bundle type approach to the unconstrained minimization of convex nonsmooth functions[J]. Mathematical Programming, 1982, 23(1): 216-226.
|
[7] |
Polak E, Mayne D H, Higgins J E. Superlinearly convergent algorithm for min-max problems[J]. Journal of Optimization Theory and Applications, 1991, 69(3): 407-439.
|
[8] |
Zowe J. Nondifferentiable optimization: a motivation and a short introduction into the subgradient and the bundle concept[C]Schittkowski K. Computational Mathematical Programming, NATO SAI Series. New York:Springer, 1985.
|
[9] |
DiPillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem[J]. Mathematical Programming, 1993, 60(1/3): 187-214.
|
[10] |
Gigola C, Gomez S. A regularization method for solving the finite convex min-max problems[J]. SIAM Journal on Numerical Analysis, 1990, 27(6): 1621-1634.
|
[11] |
Li X S, Pan S. Solving the finite min-max problem via an exponential penalty method[J]. Comput Technol, 2003, 8(2): 3-15.
|
[12] |
Ye F, Liu H, Zhou S, Liu S. A smoothing trust-region Newton-CG method for minimax problem[J]. Applied Mathematics and Computation, 2008, 199(2): 581-589.
|
[13] |
Zang I. A smoothing technique for min-max optimization[J]. Mathematical Programming, 1980, 19(1): 61-77.
|
[14] |
Zhou J L, Tits A L. An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions[J]. SIAM J Optimization, 1996, 6(2): 461-487.
|
[15] |
Zhu Z, Cai X, Jian J. An improved SQP algorithm for solving minimax problems[J]. Applied Mathematics Letters, 2009, 22(4): 464-469.
|
[16] |
Obasanjo E, Tzallas-Regas G, Rustem B. An interior-point algorithm for nonlinear minimax problems[J]. Journal of Optimization Theory and Applications, 2010, 144(2): 291-318.
|
[17] |
Huyer W, Neumaier A. A new exact penalty function[J]. SIAM Journal on Optimization, 2003, 13(4): 1141-1158.
|
[18] |
Burke J V. An exact penalization viewpoint of constrained optimization[J]. SIAM J Control and Optimization, 1991, 29(4): 968-998.
|
[19] |
Pang J S. Error bound in mathematical programming[J]. Mathematical Programming, 1997, 79(1/3): 299-332.
|