DING Xie-ping. Bilevel Generalized Mixed Equilibrium Problems Involving Generalized Mixed Variational-Like Inequality Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1361-1377. doi: 10.3879/j.issn.1000-0887.2011.11.010
Citation: DING Xie-ping. Bilevel Generalized Mixed Equilibrium Problems Involving Generalized Mixed Variational-Like Inequality Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1361-1377. doi: 10.3879/j.issn.1000-0887.2011.11.010

Bilevel Generalized Mixed Equilibrium Problems Involving Generalized Mixed Variational-Like Inequality Problems in Reflexive Banach Spaces

doi: 10.3879/j.issn.1000-0887.2011.11.010
  • Received Date: 2011-04-25
  • Rev Recd Date: 2011-09-03
  • Publish Date: 2011-11-15
  • A new class of bilevel generalized mixed equilibrium problems(BGMEP)involving generalized mixed variational-like inequality problems was introduced and studied in reflexive Banach spaces. First,an auxiliary generalized mixed equilibrium problem(AGMEP)to compute the approximate solutions of the bilevel generalized mixed equilibrium problems involving generalized mixed variational-like inequality problems was introduced.By using a minimax inequality,the existence and uniqueness of solutions of the AGMEP was proved under quite mild conditions without any coercive assumptions.By using auxiliary principle technique,new iterative algorithm to compute the approximate solutions of the BGMEP were suggested and analyzed.The strong convergence of the iterative sequences generated by the algorithms was proved under quite mild conditions without any coercive assumptions.These results are new and generalize some recent results in this field.
  • loading
  • [1]
    Tuc D T, Tan N X. Existence conditions in variational inclusions with constraints[J].Optimization, 2004, 53(5/6): 505-515. doi: 10.1080/02331930412331327175
    [2]
    Liou Y C, Yao J C. Bilevel decision via variational inequalities[J]. Comput Math Appl, 2005, 49(7/8): 1243-1253. doi: 10.1016/j.camwa.2004.05.014
    [3]
    Ding X P, Liou Y C. Bilevel optimization problems in topological spaces[J]. Taiwanese J Math, 2006, 10(1): 173-179.
    [4]
    Birbil S, Bouza G, Frenk J B G, Still G. Equilibrium constraint optimization problems[J]. Eur J Operation Res, 2006, 169(3): 1108-1127.
    [5]
    Lin L J. Mathematical programming with system of equilibrium constraints[J]. J Glob Optim, 2007, 37(2): 195-213. doi: 10.1007/s10898-006-9044-x
    [6]
    Lin L J. Existence theorems for bilevel problem with applications to mathematical program with equilibrium constraint and semi-infinite problem[J]. J Optim Theory Appl, 2008, 137(1): 27-40. doi: 10.1007/s10957-007-9283-0
    [7]
    Lin L J, Shie H J. Existence theorems of quasivariational inclusion problems with applications to bilevel problems and mathematical problems with equilibrium constrain[J].J Optim Theory Appl, 2008, 138(3): 445-457. doi: 10.1007/s10957-008-9385-3
    [8]
    丁协平. 局部FC-一致空间内的广义矢量拟变分包含组和广义矢量拟优化问题[J].应用数学和力学, 2009, 30(3): 253-264.(DING Xie-ping. Systems of generalized vector quasi-variational inclusions and Systems of generalized vector quasi-optimizations problems in locally FC-uniform spaces[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(3): 263-274.) doi: 10.1007/s10483-009-0301-z
    [9]
    Ding X P. Systems of generalized quasi-variational inclusions in locally FC-uniform spaces and applications [J]. J Sichuan Normal Univ, 2009, 32(6): 711-722.
    [10]
    Ding X P, Lai T C, Yu S J. Systems of generalized vector quasi-variational inclusion problems and application to mathematical programs[J]. Taiwanese J Math, 2009, 13(5): 1515-1536.
    [11]
    Ding X P. Mathematical programs with system of generalized vector quasi-equilibrium constraints in FC-spaces[J]. Acta Math Sci, 2010, 30(4): 1257-1268.
    [12]
    Ding X P. New systems of generalized quasi-variational inclusions in FC-spaces and applications[J]. Acta Math Sci, 2011, 31(3).
    [13]
    Moudafi A. Proximal methods for a class of bilevel monotone equilibrium problems[J]. J Glob Optim, 2010, 47(2): 287-292. doi: 10.1007/s10898-009-9476-1
    [14]
    Ding X P. Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J]. J Optim Theory Appl, 2010, 146(2): 347-357. doi: 10.1007/s10957-010-9651-z
    [15]
    Ding X P. Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J]. Acta Mathematics Sinica, English Sinica, doi: 10.1007/s10114-011-9730-6, 2011.
    [16]
    Ding X P. Existence and algorithm of solutions for nonlinear mixed quasi-variational inequalities in Banach spaces[J]. J Comput Appl Math, 2003, 157(2): 419-434.
    [17]
    Ding X P. Existence of solutions and an algorithm for mixed variational-like inequalities in Banach spaces[J]. J Optim Theory Appl, 2005, 127(2): 285-302. doi: 10.1007/s10957-005-6540-y
    [18]
    Ding X P, Yao J C. Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces[J]. Comput Math Appl, 2005, 49(5/6): 857-869. doi: 10.1016/j.camwa.2004.05.013
    [19]
    Ding X P, Yao J C, Zeng L C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J]. Comput Math Appl, 2008, 55(4): 669-679.
    [20]
    Zeng L C, Schaible S, Yao J C. Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities[J]. J Optim Theory Appl, 2005, 124(3): 725-738. doi: 10.1007/s10957-004-1182-z
    [21]
    徐海丽, 郭兴明. 广义集值强非线性混合似变分不等式的辅助原理和三步迭代算法[J]. 应用数学和力学, 2007, 28(6): 643-650.(XU Hai-li, GUO Xing-ming. Auxiliary principle and three-step iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities[J]. Applied Mathematics and Mechanics(English Edition), 2007, 28(6): 721-729.) doi: 10.1007/s10483-007-0602-x
    [22]
    Ding X P, Wang Z B. The auxiliary principle and algorithm for a system of generalized set-valued mixed variational-like inequality problems in Banach spaces[J]. J Comput Appl Math, 2010, 223(11): 2876-2883.
    [23]
    Ding X P. Iterative algorithm of solutions for generalized mixed implicit equilibrium-like problems[J]. Appl Math Comput, 2005, 162(2): 799-809. doi: 10.1016/j.amc.2003.12.127
    [24]
    Moudafi A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects[J]. Comput Math Appl, 2002, 44(8/9): 1099-1108.
    [25]
    Huang N J, Lan H Y, Cho Y J. Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings[J]. J Comput Appl Math, 2006, 196(2): 608-618.
    [26]
    Antipin A S. Iterative gradient prediction-type methods for computing fixed-point of extremal mappings[C]Guddat J, Jonden H Th, Nizicka F, Still G, Twitt F.Parametric Optimization and Related Topics Ⅳ.Frankfurt Main: Peter Lang, 1997, 11-24.
    [27]
    Aubin J P, Cellina A. Differential Inclusion[M]. Berlin, Heidberg, New York: Springer, 1994.
    [28]
    Klein E, Thompson A C. Theory of Correspondence[M]. New York: John Wiley & Sons, 1984.
    [29]
    Lin L J, Yu Z T. On some equilibrium problems for multimaps[J]. J Comput Appl Math, 2001, 129(1/2): 171-183.
    [30]
    Ding X P, Tan K K. A minimax inequality with applications to existence of equilibrium point and fixed point theorems[J]. Colloq Math, 1992, 63(2): 233-247.
    [31]
    张石生. 变分不等式和互补问题理论及应用[M].上海:上海科学技术出版社, 1991.(ZHANG Shi-sheng. Variational Inequalities and Complementary Problems: Theory and Applications[M]. Shanghai: Shanghai Scientific and Technical Press, 1991.(in Chinese))
    [32]
    Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type[M]. The Netherlands: Sythoff & Noordhoff International Publishers. Alphen aan den Rijn, 1978.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1592) PDF downloads(785) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return