Citation: | J. C. Song. Asymptotic and Other Estimates for a Semilinear Parabolic Problem in a Semi-Infinite Cylinder[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1241-1246. doi: 10.3879/j.issn.1000-0887.2011.10.009 |
[1] |
Boley B A. Upper bounds and Saint-Venant’s principle in transient heat conduction[J]. Quart Appl Math, 1960, 18: 205-207.
|
[2] |
Flavin J N, Knops R J, Payne L E. Asympotic and other estimates for a semilinear elliptic equation in a cylinder[J]. Q JI Mech Appl Math, 1992, 45(4): 618-627.
|
[3] |
LIN Chang-hao, Payne L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations, 1995, 8(3): 539-551.
|
[4] |
Payne P E, Schaefer P W, Song J C. Growth and decay results in heat conduction problems with nonlinear boundary conditions[J]. Nonlinear Analysis, 1999, 35(2): 269-286. doi: 10.1016/S0362-546X(98)00034-0
|
[5] |
Payne P E, Song J C. Spatial decay results in a cross-diffusion problem[J]. IMA Journal of Applied Mathematics, 2007, 72: 854-864. doi: 10.1093/imamat/hxm055
|
[6] |
Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle[J]. Adv Appl Mech, 1983, 23: 79-269.
|
[7] |
Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev, 1989, 42: 295-303. doi: 10.1115/1.3152414
|
[8] |
Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update[J]. Appl Mech Rev, 1996, 49: 101-111. doi: 10.1115/1.3101961
|