J. C. Song. Asymptotic and Other Estimates for a Semilinear Parabolic Problem in a Semi-Infinite Cylinder[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1241-1246. doi: 10.3879/j.issn.1000-0887.2011.10.009
Citation: J. C. Song. Asymptotic and Other Estimates for a Semilinear Parabolic Problem in a Semi-Infinite Cylinder[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1241-1246. doi: 10.3879/j.issn.1000-0887.2011.10.009

Asymptotic and Other Estimates for a Semilinear Parabolic Problem in a Semi-Infinite Cylinder

doi: 10.3879/j.issn.1000-0887.2011.10.009
  • Received Date: 2010-10-11
  • Rev Recd Date: 2011-07-13
  • Publish Date: 2011-10-15
  • The spatial decay of solutions to initial-boundary value problems for a semilinear parabolic equation in a semi-infinite cylinder of variable cross-section subject to zero condition on the lateral boundaries was investigated.A second-order differential inequality that was to show the spatial decay O(exp{-z2/[4(t+t0)]}) for an L2p cross-sectional measure of the solution was obtained.A first-order differential inequality leading to growth or decay was derived.In the case of growth an upper bound for blow-up in space was obtained while in the case of decay an upper bound for the total energy in terms of data was obtained.
  • loading
  • [1]
    Boley B A. Upper bounds and Saint-Venant’s principle in transient heat conduction[J]. Quart Appl Math, 1960, 18: 205-207.
    [2]
    Flavin J N, Knops R J, Payne L E. Asympotic and other estimates for a semilinear elliptic equation in a cylinder[J]. Q JI Mech Appl Math, 1992, 45(4): 618-627.
    [3]
    LIN Chang-hao, Payne L E. A Phragmén-Lindelf alternative for a class of quasilinear second order parabolic problems[J]. Differential and Integral Equations, 1995, 8(3): 539-551.
    [4]
    Payne P E, Schaefer P W, Song J C. Growth and decay results in heat conduction problems with nonlinear boundary conditions[J]. Nonlinear Analysis, 1999, 35(2): 269-286. doi: 10.1016/S0362-546X(98)00034-0
    [5]
    Payne P E, Song J C. Spatial decay results in a cross-diffusion problem[J]. IMA Journal of Applied Mathematics, 2007, 72: 854-864. doi: 10.1093/imamat/hxm055
    [6]
    Horgan C O, Knowles J K. Recent developments concerning Saint-Venant’s principle[J]. Adv Appl Mech, 1983, 23: 79-269.
    [7]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Appl Mech Rev, 1989, 42: 295-303. doi: 10.1115/1.3152414
    [8]
    Horgan C O. Recent developments concerning Saint-Venant’s principle: a second update[J]. Appl Mech Rev, 1996, 49: 101-111. doi: 10.1115/1.3101961
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1496) PDF downloads(749) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return