Mohsin Islam, Sadek Hossain Mallik, Mridula Kanoria. Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008
Citation: Mohsin Islam, Sadek Hossain Mallik, Mridula Kanoria. Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008

Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces

doi: 10.3879/j.issn.1000-0887.2011.10.008
  • Received Date: 2010-06-29
  • Rev Recd Date: 2011-05-04
  • Publish Date: 2011-10-15
  • A two dimensional problem for a transversely isotropic thick plate having heat source and body force was studied.The upper surface of the plate was stress free with prescribed surface temperature while the lower surface of the plate rest on a rigid foundation and was thermally insulated.The study was carried out in the context of generalized thermoelasticity proposed by Green and Naghdi.The governing equations for displacement and temperature fields were obtained in Laplace-Fourier transform domain by applying Laplace and Fourier transform techniques.The inversion of double transform had been done numerically.The numerical inversion of Laplace transform was done by using a method based on Fourier series expansion technique.Numerical computations had been done for magnesium (Mg) and the results were presented graphically.The results for an isotropic material (Cu) had been deduced numerically and presented graphically to compare with those of transversely isotropic material (Mg).The effect of body force was also studied.
  • loading
  • [1]
    Chadwick P. Thermoelasticity,the dynamic theory[C]Sneddon I N, Hill R. Progress in Solid Mechanics. Vol Ⅰ. Amsterdam: North-Holland, 1960: 263-368.
    [2]
    Nowacki W. Thermoelasticity[M]. Oxford:Pergamon Press, 1962.
    [3]
    Nowacki W. Dynamic Problems of Thermoelasticity[M]. Leyden: Noordhoff International Publishing, 1975.
    [4]
    Lord H, Shulman Y. A generalized dynamic theory of thermoelasticity[J]. J Mech Phys Solids, 1967, 15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [5]
    Green A E, Lindsay K A. Thermoelasticity[J]. J Elasticity, 1972, 2(1): 1-7. doi: 10.1007/BF00045689
    [6]
    Chandrasekharaiah D S. Thermoelasticity with second sound[J]. Appl Mech Rev, 1986, 39(3): 355-376. doi: 10.1115/1.3143705
    [7]
    Chandrasekharaiah D S. A note on the uniqueness of solution in the theory of thermoelasticity without energy dissipation[J]. J Elasticity, 1996, 43(3): 279-283. doi: 10.1007/BF00042504
    [8]
    Chandrasekharaiah D S. A uniqueness theorem in the theory of thermoelasticity without energy dissipation[J]. J Thermal Stresses, 1996, 19(3): 267-272. doi: 10.1080/01495739608946173
    [9]
    Chandrasekharaiah D S. One dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation[J]. J Thermal Stresses, 1996, 19(8): 695-710. doi: 10.1080/01495739608946202
    [10]
    Chandrasekharaiah D S,Srinath K S. Thermoelastic interactions without energy dissipation due to a point heat sources[J]. J Elasticity, 1998, 50(2): 97-108. doi: 10.1023/A:1007412106659
    [11]
    Sherief H H. On uniqueness and stability in generalized thermoelasticity[J]. Quart Appl Math, 1987,45: 773-778.
    [12]
    Ignaczak J. Uniqueness in generalized thermoelasticity[J]. J Thermal Stresses, 1979, 2(2): 171-175. doi: 10.1080/01495737908962399
    [13]
    Ignaczak J. A note on uniqueness in thermoelasticity with one relaxation time[J]. J Thermal Stresses, 1982, 5(3/4): 257-263. doi: 10.1080/01495738208942149
    [14]
    Ignaczak J. Generalized thermoelasticity and its applications[C]Hetnarski R B. Thermal Stresses.Chapter 4. Vol Ⅲ. Oxford: Elsevier, 1989.
    [15]
    Ackerman C C, Guyer R A. Temperature pulses in dielectric solids[J]. Ann Phys, 1968, 50(1): 128-185. doi: 10.1016/0003-4916(68)90320-5
    [16]
    Jackson H E,Walker C T, McNelly T F. Second sound in NaF[J]. Phys Rev Lett, 1970, 25(1): 26-28. doi: 10.1103/PhysRevLett.25.26
    [17]
    Jackson H E, Walker C T. Thermal conductivity, second sound, and phonon-phonon interactions in NaF[J]. Phys Rev, 1971, 3(4): 1428-1439. doi: 10.1103/PhysRevB.3.1428
    [18]
    Rogers S J. Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals[J]. Phys Rev, 1971, 3(4): 1440-1457. doi: 10.1103/PhysRevB.3.1440
    [19]
    Narayanmurti V, Dynes R C. Observation of second sound in bismuth[J]. Phys Rev Lett, 1972, 28(22): 1461-1465. doi: 10.1103/PhysRevLett.28.1461
    [20]
    Green A E, Naghdi P M. A re-examination of the basic results of thermomechanics[J]. Proc Roy Soc London Ser A, 1991, 432: 171-194. doi: 10.1098/rspa.1991.0012
    [21]
    Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. J Thermal Stresses,1992, 15(2): 252-264.
    [22]
    Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. J Elasticity, 2006, 31(3): 189-208.
    [23]
    Mallik S H, Kanoria M. Effect of rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat sources—an eigenvalue approach[J]. Far East J Appl Math, 2006, 23(2):147-167.
    [24]
    Roychoudhuri S K, Dutta P S. Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources[J]. Int J Solids Structures, 2005, 42(14): 4192-4203. doi: 10.1016/j.ijsolstr.2004.12.013
    [25]
    Mallik S H, Kanoria M. A two dimensional problem for a transversely isotropic generalized thermoelasticitic thick plate with spatially varying heat source[J]. Euro J Mech /A Solids, 2008, 27(4): 607-621. doi: 10.1016/j.euromechsol.2007.09.002
    [26]
    Mallik S H, Kanoria M. A two dimensional problem in generalized thermoelasticity for a rotating orthotropic infinite medium with heat sources[J].Indian J Math, 2007, 49(1): 47-70.
    [27]
    Mallik S H, Kanoria M. Generalized thermoelastic functionally graded solid with a periodically varying heat source[J]. Int J Solids Structures, 2007, 44(22/23): 7633-7645. doi: 10.1016/j.ijsolstr.2007.05.001
    [28]
    Banik S, Mallik S H, Kanoria M. Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodically varying heat sources[J]. Int J Pure Appl Math, 2007, 34(2): 231-245.
    [29]
    Bondyopadhyay N, Roychoudhuri S K.Thermoelastic wave propagation without energy dissipation in an elastic half space[J]. Bull Cal Math Soc, 2005, 97(6): 489-502.
    [30]
    Verma K L, Hasebe N. Wave propagation in transversely isotropic plates in generalized thermoelasticity[J]. Arch Appl Math, 2002, 72(6/7): 470-482. doi: 10.1007/s00419-002-0215-z
    [31]
    Honig G, Hirdes U. A method for the numerical inversion of the Laplace transform[J]. J Comp Appl Math, 1984, 10(1): 113-132. doi: 10.1016/0377-0427(84)90075-X
    [32]
    Dhaliwal R S, Singh A. Dynamic Coupled Thermoelasticity[M]. Delhi: Hindustan Pub, 1980.
    [33]
    El-Maghraby N M. Two dimensional problem in generalized thermoelasticity with heat sources[J]. J Thermal Stresses, 2004, 27(3): 227-239. doi: 10.1080/01495730490264358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1573) PDF downloads(730) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return