Citation: | CAI Yan, WU Jie, XU Shi-xiong, LONG Quan, YAO Wei. Numerical Simulation of the Inhibiting Effects on Solid Tumour Cells in Anti-Angiogenic Therapy: an Application of Coupled Mathematical Model of Angiogenesis With Tumour Growth[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1199-1207. doi: 10.3879/j.issn.1000-0887.2011.10.006 |
[1] |
Folkman J. Tumor angiogenesis: therapeutic implication[J]. New England Journal of Medicine, 1971, 285(17): 1182-1186. doi: 10.1056/NEJM197111182852108
|
[2] |
Anderson A R A, Chaplain M A J. Continuous and discrete mathematical models of tumor-induced angiogenesis[J]. Bulletin of Mathematical Biology, 1998, 60(5): 857-900. doi: 10.1006/bulm.1998.0042
|
[3] |
CAI Yan, Gulnar K, ZHANG Hong-yi, CAO Jin-feng, XU Shi-xiong, LONG Quan. Numerical simulation of tumor-induced angiogenesis influenced by the extracellular matrix mechanical environment[J]. Acta Mechanica Sinica, 2009, 25(6): 889-895. doi: 10.1007/s10409-009-0301-3
|
[4] |
Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer J P. A multiscale model for avascular tumor growth[J]. Biophysical Journal, 2005, 89(6): 3884-3894. doi: 10.1529/biophysj.105.060640
|
[5] |
Delsanto P P, Condat C A, Pugno N, Gliozzi A S, Griffa M. A multilevel approach to cancer growth modeling[J]. Journal of Theoretical Biology, 2008, 250(1): 16-24. doi: 10.1016/j.jtbi.2007.09.023
|
[6] |
Alarcón T, Owen M R, Byrne H M, Maini P K. Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy[J]. Computational and Mathematical Methods in Medicine, 2006, 7(2/3): 85-119. doi: 10.1080/10273660600968994
|
[7] |
Zheng X, Wise S M, Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method[J]. Bulletin of Mathematical Biology, 2005, 67(2): 211-259. doi: 10.1016/j.bulm.2004.08.001
|
[8] |
Hogea C S, Murray B T, Sethian J A. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method[J]. Journal of Mathematical Biology, 2006, 53(1): 86-134. doi: 10.1007/s00285-006-0378-2
|
[9] |
Macklin P, Lowengrub J. Nonlinear simulation of the effect of microenvironment on tumor growth[J]. Journal of Theoretical Biology, 2007, 245(4): 677-704. doi: 10.1016/j.jtbi.2006.12.004
|
[10] |
Welter M, Rieger H. Physical determinants of vascular network remodeling during tumor growth[J]. European Physical Journal E, 2010, 33(2): 149-163. doi: 10.1140/epje/i2010-10611-6
|
[11] |
Welter M, Bartha K, Rieger H. Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor[J]. Journal of Theoretical Biology, 2008, 250(2): 257-280. doi: 10.1016/j.jtbi.2007.09.031
|
[12] |
Fukumura D, Jain R K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvascular Research, 2007, 74(2/3): 72-84. doi: 10.1016/j.mvr.2007.05.003
|
[13] |
CAI Yan, XU Shi-xiong, WU Jie, LONG Quan. Coupled modeling of tumour angiogenesis, tumour growth and blood perfusion[J]. Journal of Theoretical Biology, 2011, 279(1): 90-101. doi: 10.1016/j.jtbi.2011.02.017
|
[14] |
高昊,许世雄,蔡颖, Collins M W. 肿瘤血管生成的二维数值模拟[J]. 力学季刊, 2005, 26(3): 468-471. (GAO Hao, XU Shi-xiong, CAI Ying, Collins M W. Two dimensional mathematical models of tumor-induced angiogenesis[J]. Chinese Quarterly of Mechanics, 2005, 26(3): 468-471. (in Chinese))
|
[15] |
Anderson A R A. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[J]. Mathematical Medicine and Biology, 2005, 22(2): 163-186. doi: 10.1093/imammb/dqi005
|
[16] |
Duval H, Harris M, Li Jia, Johnson N, Print C. New insights into the function and regulation of endothelial cell apoptosis[J]. Angiogenesis, 2003, 6(3): 171-183. doi: 10.1023/B:AGEN.0000021390.09275.bc
|
[17] |
WU Jie, XU Shi-xiong, LONG Quan, Collins M W, Konig C S, ZHAO Gai-ping, JIANG Yu-ping, Padhani A R. Coupled modeling of blood perfusion in intravascular, interstitial spaced in tumor microvasculature[J]. Journal of Biomechanics, 2008, 41(5): 996-1004. doi: 10.1016/j.jbiomech.2007.12.008
|
[18] |
蔡彦,吴洁,古娜,张洪一,曹金凤,许世雄,龙泉,柯林斯. 抗血管生成药物Endostatin作用下实体肿瘤血管生成的数值模拟:考虑基质力学环境及血管生成抑素的影响[J]. 应用数学和力学, 2009, 30(10): 1165-1172. (CAI Yan, WU Jie, Gulnar K, ZHANG Hong-yi, CAO Jin-feng, XU Shi-xiong, LONG Quan, Collins M W. Numerical simulation of tumor angiogenesis under the effect of Endostatin: considering mechanical environment in matrix and inhibiting effect of anti-angionic factor[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(10): 1247-1254.)
|
[19] |
Huber P E, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone H J, Debus J, Lipson K E, Abdollahi A. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chometherapy[J]. Cancer Research, 2005, 65(1): 3643-3655. doi: 10.1158/0008-5472.CAN-04-1668
|
[20] |
Willett C G, Boucher Y, Tomaso E, Duda D G, Munn L L, Tong R T, Chung D C, Sahani D V, Kalva S P, Kozin S V, Mino M, Cohen K S, Scadden D T, Hartford A C, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Chen H X, Shellito P C, Lauwers G Y, Jain R K. Direct evidence that the anti-VEGF antibody Bevacizumab has anti-vascular effects in human rectal cancer[J]. Nature Medicine, 2004, 10(2): 145-147. doi: 10.1038/nm988
|