V. Čović, D. Djurić, M. Vesković, A. Obradović. Liapunov-Kozlov Method for Singular Cases[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012
Citation: V. Čović, D. Djurić, M. Vesković, A. Obradović. Liapunov-Kozlov Method for Singular Cases[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1127-1138. doi: 10.3879/j.issn.1000-0887.2011.09.012

Liapunov-Kozlov Method for Singular Cases

doi: 10.3879/j.issn.1000-0887.2011.09.012
  • Received Date: 2011-03-25
  • Rev Recd Date: 2011-06-15
  • Publish Date: 2011-09-15
  • Liapunov's first method,extended by V.Kozlov to nonlinear mechanical systems,was applied to the study of the instability of the position of equilibrium of a mechanical system moving in the field of conservative and dissipative forces.The cases with the tensor of inertia or the matrix of coefficients of the Rayleigh dissipative function singular in the equilibrium position were analyzed.This fact renders impossible the application of Liapunov's approach in the analysis of stability because in the equilibrium position the conditions of existence and uniqueness of solutions of differential equations of motion were not fulfilled.It was shown that Kozlov's generalization of Liapunov's first method was also applied in mentioned cases on condition that besides known one algebraic expression more was fulfilled.Three theorems on the instability of the equilibrium position were formulated.The results were illustrated by an example.
  • loading
  • [1]
    Karapetyan A V, Rumyantsev V V. Stability of conservative and dissipative systems[J]. Itogi Nauki i Tekhniki, Obshchaya Mekh, 1983, 6: 128. (in Russian)
    [2]
    Karapetyan A V. Stability of Steady Motions[M]. Moscow: Editorial URSS, 1998, 165 . (in Russian)
    [3]
    梅凤翔,史荣昌,张永发,朱海平. 约束力学系统的运动稳定性[M]. 北京: 北京理工大学出版社, 1997.(MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-fa, ZHU Hai-ping. Stability of Motion of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 1997. (in Chinese))
    [4]
    梅凤翔. 关于非线性非完整系统平衡状态的稳定性[J]. 科学通报, 1992, 37(1):82-85.(MEI Feng-xiang. On stability of equilibrium states of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(1): 82-85.(in Chinese))
    [5]
    MEI Feng-xiang. On the stability of equilibria of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(16): 1397-1401.
    [6]
    朱海平, 梅凤翔. 关于非完整力学系统系统相对部分变量的稳定性[J]. 应用数学和力学,1995,16(3):225-234.(ZHU Hai-ping,MEI Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables[J]. Applied Mathematics and Mechanics(English Edition), 1995, 16(3): 237-245.)
    [7]
    Shi R C, Mei F X, Zhu H P. On the stability of the motion of a Birkhoff system[J]. Mechanics Research Communications, 1994, 21(3): 269-272. doi: 10.1016/0093-6413(94)90077-9
    [8]
    Fu J L, Chen L Q, Luo Y, Luo S K. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chinese Physics, 2003, 12(4): 351-356. doi: 10.1088/1009-1963/12/4/301
    [9]
    Fu J L, Chen L Q, Xue Y, Luo S K. Stability of the equilibrium state in relativistic Birkhoff systems[J]. Wuli Xuebao/Acta Physica Sinica, 2002, 51(12): 2683-2689.
    [10]
    Fu J L, Chen L Q, Xue Y. Stability for the equilibrium state of rotational relativistic Birkhoffian systems[J]. Wuli Xuebao/Acta Physica Sinica, 2003, 52 (2): 256-261.
    [11]
    Luo S K, Chen X W, Fu J L. Stability theorems for the equilibrium state manifold of non-holonomic systems in a noninertial reference frame[J]. Mechanics Research Communication, 2001, 28(4): 463-469. doi: 10.1016/S0093-6413(01)00196-3
    [12]
    Lyapunov A M. The General Problem of the Stability of Motion[M]. Khar’kov: Mat Obshch, 1892: 450. (in Russian)
    [13]
    Furta S D. On the instability of equilibrium position of constrained mechanical systems[J]. Prikladnaya Mekhanika, 1991, 27(2): 102-106. (in Russian)
    [14]
    Kozlov V V. On the asymptotic motions of systems with dissipation[J]. Journal of Applied Mathematics and Mechanics, 1994, 58(5): 787-792. doi: 10.1016/0021-8928(94)90003-5
    [15]
    Kozlov V V, Furta S D. Asymptotics of Solutions for Strongly Nonlinear Systems of Differential Equations[M]. Institute of Computer Science, Regular and Chaotic Dynamics. Moscow: Izhevsk, 2009: 312. (in Russian)
    [16]
    Kozlov V V, Furta S D. Lyapunov’s first method for strongly non-linear systems[J]. Journal of Applied Mathematics and Mechanics, 1996, 60(1): 7-18. doi: 10.1016/0021-8928(96)00003-2
    [17]
    Kozlov V V. On the stability of equilibria of non-Holonomic systems[J]. Soviet Mathematics - Doklady, 1986, 33(3): 654-656. (in Russian)
    [18]
    Kuznetsov A N. The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution[J]. Funktsional'nyi Analiz i yego Prilozheniya, 1989, 23(4): 63-74. (in Russian)
    [19]
    Cˇovic' V, Veskovic' M, Obradovic' A. On the stability of steady motion[J]. Meccanica. doi: 10.1007/s11012-010-9348-2.
    [20]
    Veskovic' M. On the equilibrium stability of mechanical systems with dissipation[J]. Theoretical and Applied Mechanics, 1998, 24: 139-154.
    [21]
    Cˇovic' V, Veskovic' M, Obradovic' A. On the instability of equilibrium of nonholonomic systems with nonhomogeneous constraints[J]. Mathematical and Computer Modeling, 2010, 51(9/10): 1097-1106. doi: 10.1016/j.mcm.2009.12.017
    [22]
    V·科维克, M·维什科维克, D·狄加瑞克, A·阿伯拉达维克. 非线性约束下非完整系统的平衡稳定性[J]. 应用数学和力学, 2010, 31(6):722-730. (Cˇovic' V, Veskovic' M, DJuric' D. Obradovic' A. On the stability of equilibria of nonholonomic systems with nonlinear constraints[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 751-760.)
    [23]
    M·韦仕科尉克, V·科尉克, A·奥布拉德尉克. 非完整系统有耗散和循环力时的平衡不稳定性[J]. 应用数学和力学, 2011, 32(2): 202-212.(Veskovic' M, Cˇovic' V, Obradovic' A. Instability of equilibrium of nonholonomic systems with dissipation and circulatory forces[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(2): 212-222.)
    [24]
    Veskovic' M, Cˇovic' V. Lyapunov first method for nonholonomic systems with circulatory forces[J]. Mathematical and Computer Modeling, 2007, 45(9/10): 1145-1156. doi: 10.1016/j.mcm.2006.09.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1365) PDF downloads(677) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return