MU Xiao-wu, DING Zhi-shuai, CHENG Gui-fang. Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010
Citation: MU Xiao-wu, DING Zhi-shuai, CHENG Gui-fang. Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1110-1117. doi: 10.3879/j.issn.1000-0887.2011.09.010

Uniformly Ultimate Boundedness for a Class of Discontinuous Systems With Time-Delays

doi: 10.3879/j.issn.1000-0887.2011.09.010
  • Received Date: 2011-04-13
  • Rev Recd Date: 2011-06-15
  • Publish Date: 2011-09-15
  • Uniformly ultimate boundedness of discontinuous systems with time-delays in the sense of Filippov solutions were mainly discussed.Based on Lyapunov-Krasovskii functional,Lyapunov theorem for globally strongly uniformly ultimate boundedness of retarded discontinuous systems was shown.Furthermore,the result is applied to a class of mechanical systems with retarded discontinuous friction item.
  • loading
  • [1]
    Matrosov V M. On the stability of motion[J]. J Appl Math Mech, 1962, 26(5): 1337-1353. doi: 10.1016/0021-8928(62)90010-2
    [2]
    Filippov A F. Differential equations with discontinuous right-hand side[J]. Amer Math Soc Translations, 1964, 42(2): 199-231.
    [3]
    Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Transactions on Automatic Control, 1994, 39(9): 1910-1914. doi: 10.1109/9.317122
    [4]
    Ceragioli F. Discontinuous ordinary differential equations and stabilization[D]. Firenze: Dipartmento di Matematica, Universita Degli Studi, 1999.
    [5]
    Bacciotti A, Ceragioli F. Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions[J]. Esaim Control, Optimisation and Calculus of Variations, 1999, 4: 361-376. doi: 10.1051/cocv:1999113
    [6]
    Loria A, Panteley E. Nijmeijer H. A remark on passivity-based and discontinuous control of uncertain nonlinear systems [J]. Automatica, 2001, 37(9): 1481-1487. doi: 10.1016/S0005-1098(01)00097-8
    [7]
    郭兴明,罗辉. 一类具有不连续非线性项的微分包含[J]. 上海大学学报(自然科学版), 2000, 6(4): 291-297.(GUO Xing-ming, LUO Hui. Differential inclusions with discontinuous nonlinear items[J]. Journal of Shanghai University (Natural Science), 2000, 6(4): 291-297.(in Chinese))
    [8]
    Nakakuki T, Shen T L, Tamura K. Robust tracking control for robot systems with discontinuous uncertainty: an approach based on Filippov’s framework[J]. Electrical Engineering in Japan, 2008, 164(4): 463-470.
    [9]
    Zhang J Y, Shen T L, Jiao X H. Stability and feedback design of a class of time-delay systems with discontinuity:functional differential inclusion-based approach[J]. IEE J Trans EIS, 2009, 129(6): 1108-1114. doi: 10.1541/ieejeiss.129.1108
    [10]
    Zhang J Y, Shen T L, and Jiao X H. Functional differential inclusion-based approach to control of discontinuous nonlinear systems with time delay[C]Proceedings of IEEE Conference on Decision and Control, 2008: 5300-5305.
    [11]
    Zhang J Y, Shen T L, Jiao X H. L2-gain analysis and feedback design for discontinuous time-delay systems based on functional differential inclusion[C]Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 2009: 5114-5119.
    [12]
    Khalil H K. Nonlinear Systems[M]. 3rd Edition. New Jewsy: Prentice Hall, 2002.
    [13]
    Peuteman J, Aeyels D, Sepulchre R. Boundedness properties for time-varying nonlinear systems[J]. Siam Journal on Control and Optimization, 2000, 39(5): 3408-3422.
    [14]
    卜春霞, 慕小武. 一类时变非线性系统的一致有界性的注记[J]. 数学的实践与认识, 2004, 34(6): 138-142.(BU Chun-xia, MU Xiao-wu. A note for uniform boundedness of a class of time-varying nonlinear systems[J]. Mathematics in Practice and Theory, 2004, 34(6): 138-142. (in Chinese))
    [15]
    程桂芳, 慕小武, 丁志帅. 一类不连续非自治系统的一致最终有界性[J]. 应用数学学报, 2007, 30(4): 675-681.(CHENG Gui-fang, MU Xiao-wu, DING Zhi-shuai. Uniformly ultimate boundedness for a class of discontinuous nonautonomous systems[J]. Acta Mathematica Applicatae Sinica, 2007, 30(4): 675-681. (in Chinese))
    [16]
    Clarke F H, Ledyaev Y S, Stern R J, Wolenski P R. Nonsmooth Analysis and Control Theory[M]. Graduate Texts in Mathematics, New York: Springer, 1998.
    [17]
    Filippov A F. Differential Equations With Discontinuous Right-Hand Sides[M]. Netherlands: Dordrecht, Kluwer, 1988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1745) PDF downloads(841) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return