Citation: | L. K. Saha, S. Siddiqa, M. A. Hossain. Effect of Hall Current on the MHD Natural Convection Flow From a Vertical Permeable Flat Plate With Uniform Surface Heat Flux[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1054-1070. doi: 10.3879/j.issn.1000-0887.2011.09.005 |
[1] |
Sato H. The Hall effect in the viscous flow of ionized gas between two parallel plates under transverse magnetic field[J]. J Phys Soc Japan, 1961, 16: 1427-1433. doi: 10.1143/JPSJ.16.1427
|
[2] |
Yamanishi T. Hall effect in the viscous flow of ionized gas through straight channels[C]17th Annual Meeting of Phys Soc Japan, 1962,5: 29.
|
[3] |
Sherman A, Sutton G W. Magnetohydrodynamics[M]. Illinois: Northwestern University Press, 1961.
|
[4] |
Katagiri M. The effect of Hall currents on the magnetohydrodynamic boundary layer flow past a semi-infinite flat plate[J]. J Phys Soc Japan, 1969, 27: 1051-1059. doi: 10.1143/JPSJ.27.1051
|
[5] |
Pop I,Watanabe T. Hall effect on magnetohydrodynamic free convection about a semi-infinite vertical flat plate[J]. Int J Eng Sci, 1994, 32(2): 1903-1911. doi: 10.1016/0020-7225(94)90087-6
|
[6] |
Aboeldahab M E, Elbarbary M E. Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite plate with mass transfer[J]. Int J Eng Sci, 2001, 39(14): 1641-1652. doi: 10.1016/S0020-7225(01)00020-9
|
[7] |
Eichhorn R. The effect of mass transfer on free convection[J]. ASME J Heat Transfer, 1960, 82: 260-263. doi: 10.1115/1.3679928
|
[8] |
Vedhanayagam M, Altenkirch R A, Echhorn R A. Transformation of the boundary layer equation for free convection flow past a vertical flat plate with arbitrary blowing and wall temperature variation[J]. Int J Heat Mass Transfer, 1980, 23: 1236-1288.
|
[9] |
Lin H T, Yu W S. Free convection on horizontal plate with blowing and suction[J]. ASME J Heat Transfer, 1988, 110(3): 793-796. doi: 10.1115/1.3250564
|
[10] |
Hossain M A, Alam K C A, Rees D A S. MHD free and forced convection boundary layer flow along a vertical porous plate[J]. Appl Mech Engrg, 1997, 2(1): 33-51.
|
[11] |
Saha L K, Hossain M A, Gorla R S R. Effect of Hall current on the MHD laminar natural convection flow from a vertical permeable flat plate with uniform surface temperature[J]. Int J Ther Sci, 2007, 46(8): 790-801. doi: 10.1016/j.ijthermalsci.2006.10.009
|
[12] |
Hossain M A, Rashid R I M A. Hall effects on hydromagnetic free convection flow along a porous flat plate with mass transfer[J]. J Phys Soc Japan, 1987, 56(1): 97-104. doi: 10.1143/JPSJ.56.97
|
[13] |
Siddiqa S, Asghar S, Hossain M A. Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity[J]. Math and Comp Model, 2010, 52(9/10): 1739-1751. doi: 10.1016/j.mcm.2010.07.001
|
[14] |
Minkowycz W J, Sparrow E M. Numerical solution scheme for local nonsimilarity boundary layer analysis[J]. Numerical Heat Trans, 1978, 1(1/3):69-85.
|
[15] |
Chen T S. Parabolic system: local nonsimilarity method[C]Minkowycz W J, Sparrow E M, Schneider G E, Pletcher R H. Handbook of Numerical Heat Transfer. New York: Wiley, 1988.
|
[16] |
Nachtsheim P R, Swigert P. Satisfaction of the asymptotic boundary conditions in numerical solution of the system of nonlinear equations of boundary layer type[A]. NASA TND-3004, 1965.
|
[17] |
Butcher J C. Implicit Runge-Kutta process[J]. Math Comp, 1964,18(85): 50-55. doi: 10.1090/S0025-5718-1964-0159424-9
|
[18] |
Wilks G, Hunt R. Magnetohydrodynamic free convection flow about a semi-infinite plate at whose surface the heat flux is uniform[J]. ZAMP, 1984, 35(1): 34-49. doi: 10.1007/BF00945174
|