Citation: | LI Shu-feng, ZHANG Peng, Wong S C. Conservation Form of Helbing’s Fluid Dynamic Traffic Flow Model[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1037-1045. doi: 10.3879/j.issn.1000-0887.2011.09.003 |
[1] |
Lighthill M J, Whitham G B. On kinematic waves Ⅱ: a theory of traffic flow on long crowded roads[J].Proc Roy Soc A, 1995, 229(1178): 317-345.
|
[2] |
Richards P I. Shock waves on the highway[J].Operations Research, 1956, 4(1): 42-51.
|
[3] |
Payne H J. Models of freeway traffic and control[C]Bekey A G.Mathematical Models of Public Systems.Simulation Council Proc, La Jolla, 1971, 1: 51-61.
|
[4] |
Whitham G B. Linear and Nonlinear Waves[M].New York: John Wiley and Sons, 1974.
|
[5] |
Kerner B S, Konhuser P. Structure and parameters of clusters in traffic flow[J].Phys Rev E, 1994, 50(1): 54-83. doi: 10.1103/PhysRevE.50.54
|
[6] |
Siebel F, Mauser W. On the fundamental diagram of traffic flow[J].SIAM J Appl Math, 2006, 66(4): 1150-1162. doi: 10.1137/050627113
|
[7] |
Zhang P, Wong S C, Dai S Q. Characteristic parameters of a wide cluster in a higher-order traffic flow model[J].Chin Phys Lett, 2006, 23(2): 516-519. doi: 10.1088/0256-307X/23/2/067
|
[8] |
Zhang P, Wong S C. Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models[J].Phys Rev E, 2006, 74(2): 026109. doi: 10.1103/PhysRevE.74.026109
|
[9] |
Xu R Y, Zhang P, Dai S Q, Wong S C. Admissibility of a wide cluster solution in anisotropic higher-order traffic flow models.[J].SIAM J Appl Math, 2007, 68(2): 562-573. doi: 10.1137/06066641X
|
[10] |
Zhang P, Wong S C, Dai S Q. A conserved higher-order anisotropic traffic flow model: description of equilibrium and non-equilibrium flows[J].Transpn Res Part B, 2009, 43(5): 562-574. doi: 10.1016/j.trb.2008.10.001
|
[11] |
Tang T Q, Huang H J, Shang H Y. A new macro model for traffic flow with the consideration of the driver’s forecast effect[J].Physics Letters A, 2010, 374(15/16): 1668-1672. doi: 10.1016/j.physleta.2010.02.001
|
[12] |
Prigogine I, Herman R. Kinetic Theory of Vehicular Traffic[M].New York: American Elsevier Publishing Co,1971.
|
[13] |
Paveri-Fontana S L. On Boltzmann-like treatments for traffic flow: a critical review of the basic model and an alternative proposal for dilute traffic analysis[J].Transpn Res, 1975, 9(4): 225-235. doi: 10.1016/0041-1647(75)90063-5
|
[14] |
Phillips W. Kinetic Model for Traffic Flow[M].Springfield, VA: National Technical Information Service, 1977.
|
[15] |
Helbing D. A fluid-dynamic model for the movement of pedestrians[J].Complex Systems, 1992, 6(5): 391-415.
|
[16] |
Helbing D, Hennecke A, Shvetsov V, Treiber M. Master: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model[J]. Transpn Res Part B, 2001, 35(2): 183-211. doi: 10.1016/S0191-2615(99)00047-8
|
[17] |
Hoogendoorn S P, Bovy P H L. Continuum modeling of multiclass traffic flow[J]. Transpn Res Part B, 2000, 34(2): 123-146. doi: 10.1016/S0191-2615(99)00017-X
|
[18] |
Hoogendoorn S P, Bovy P H L. Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow[J]. Transpn Res Part B, 2001, 35(4): 317-336. doi: 10.1016/S0191-2615(99)00053-3
|
[19] |
Ngoduy D. Derivation of continuum traffic model for weaving sections on freeways[J]. Transportmetrica, 2006, 2(3): 199-222. doi: 10.1080/18128600608685662
|
[20] |
Ngoduy D. Application of gas-kinetic theory to modeling mixed traffic of manual and ACC vehicles[J]. Transportmetrica, doi: 10.1080/18128600903578843.
|
[21] |
Helbing D. Improved fluid-dynamic model for vehicular traffic[J].Phys Rev E, 1995, 51(4): 3164-3169.
|
[22] |
Liu T P. Hyperbolic and viscous conservation laws[C]CBMS-NSF Regional Conference Series in Applied Mathematics 72, SIAM, Philadelphia, PA, 2000.
|
[23] |
Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one dimensional systems[J].J Comput Phys, 1989, 84(1): 90-113. doi: 10.1016/0021-9991(89)90183-6
|
[24] |
Cockburn B, Shu C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J].SIAM J Numer Anal, 1998, 35(6): 2440-2463. doi: 10.1137/S0036142997316712
|
[25] |
Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].J Comput Phys, 1997, 131(2): 267-279. doi: 10.1006/jcph.1996.5572
|