ZHANG Shi-sheng, WANG Xiong-rui, LIU Min, ZHU Jin-hua. Almost Surely T-Stability and Convergence for Random Iterative Algorithms[J]. Applied Mathematics and Mechanics, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013
Citation: ZHANG Shi-sheng, WANG Xiong-rui, LIU Min, ZHU Jin-hua. Almost Surely T-Stability and Convergence for Random Iterative Algorithms[J]. Applied Mathematics and Mechanics, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013

Almost Surely T-Stability and Convergence for Random Iterative Algorithms

doi: 10.3879/j.issn.1000-0887.2011.06.013
  • Received Date: 2010-11-24
  • Rev Recd Date: 2011-04-08
  • Publish Date: 2011-06-15
  • The purpose was to study the almost surely T-stability and convergence of Ishikawa-type and Mann-type random iterative algorithms for some kind of φ-weakly contractive type random operators in a separable Banach space.Under suitable conditions the Bochner integrability of random fixed points for this kind of random operators and the almost surely T-stability and convergence for these two kinds of random iterative algorithms were proved.
  • loading
  • [1]
    Joshi M C, Bose R K. Some Topics in Nonlinear Functional Analysis[M].New York: Wiley Eastern Limited, 1985.
    [2]
    张石生.不动点理论及应用[M]. 重庆:重庆出版社,1984.(ZHANG Shi-sheng. Fixed Point Theory and Applications[M]. Chongqing: Chongqing Publishing Press, 1984.(in Chinese))
    [3]
    Spacek A. Zufallige gleichungen[J]. Czechoslovak Math J, 1995, 5: 462-466.
    [4]
    Hans O. Random operator equations[C]Proceedings of 4th Berkeley Sympos Math Statist and Prob. Vol Ⅱ, part Ⅰ.California: University of California Press, 1961: 185- 202.
    [5]
    Itoh S. Random fixed point theorems with an application to random differential equations in banach spaces[J]. J Math Anal Appl, 1979, 67(2): 261-273. doi: 10.1016/0022-247X(79)90023-4
    [6]
    Chang S S, Cho Y J, Kim J K, Zhou H Y. Random Ishikawa iterative sequence with applications[J]. Stochastic Anal and Appl, 2005, 23(1): 69-77. doi: 10.1081/SAP-200044432
    [7]
    Beg I, Abbas M. Equivalence and stability of random fixed point iterative procedures[J]. J Appl Math Stoch Anal, 2006, 2006: 1-19, Article ID 23297.
    [8]
    Berinde V. On the convergence of the Ishikawa iteration in the class of quasi-contractive operators[J].Acta Math Univ Comenianae, 68(1), 2004, 119-126.
    [9]
    Rhoades B E. Fixed point iterations using infinite matrices[J]. Trans Amer Math Soc, 1974, 196: 161-176. doi: 10.1090/S0002-9947-1974-0348565-1
    [10]
    Rhoades B E. Some theorems on weakly contractive maps[J]. Nonlinear Anal, 2001, 47(4): 2683-2693. doi: 10.1016/S0362-546X(01)00388-1
    [11]
    Berinde V. On the stability of some fixed point procedures[J]. Bul Stiint Univ Baia Mare, Ser. B, Matematica-Informatica, 2002,18(1): 7-14.
    [12]
    Olatinwo M O. Some stability results for two hybrid fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann type[J]. J Adv Math Studies, 2008, 1(1): 5-14.
    [13]
    Rhoades B E. Fixed point theorems and stability results for fixed point iteration procedures[J]. Indian J Pure Appl Math, 1990, 21(1): 1-9.
    [14]
    Rhoades B E. Fixed point theorems and stability results for fixed point iteration procedures Ⅱ[J]. Indian J Pure Appl Math, 1993, 24(11): 691-703.
    [15]
    Alber Ya I, Guerre-Delabriere S. Principles of weakly contractive maps in Hilbert spaces[C]Gohberg Yu Lyubich. New Result in Operator Theory,Advances and Appl, Vol 198. Basel, Switzerland: Birkhauser, 1997: 7-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1649) PDF downloads(832) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return