ZHANG Yong, ZHU De-tong. Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011
Citation: ZHANG Yong, ZHU De-tong. Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011

Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems

doi: 10.3879/j.issn.1000-0887.2010.12.011
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-11-01
  • Publish Date: 2010-12-15
  • An in exact Newton methodvia Lanczos decomposed technique was proposed for solving the box-constrained nonlinear systems.The iterative direction was obtained by solving an affine scaling quadratic modelwith Lanczos decom posed technique.By using the in terior backtracking line search technique,the acceptable trial steplength a long this direction will be found.The global convergence and fastlocal convergence rate of the proposed algorithm were established under some reasonable conditions.Furthermore,the results of the numerical expermients are reported to show the effectiveness of the proposed a lgorithm.
  • loading
  • [1]
    Coleman T F, Li Y. An interior trust-region approach for nonlinear minimization subject to bounds[J]. SIAM J Optim, 1996, 6(2): 418-445. doi: 10.1137/0806023
    [2]
    Bellavia S, Macconi M, Morini B. An affine scaling trust-region approach to bound-constrained nonlinear systems[J]. Appl Numer Math, 2003, 44(3): 257-280. doi: 10.1016/S0168-9274(02)00170-8
    [3]
    Jia C A, Zhu D T. An affine scaling interior algorithm via Lanczos path for solving bound-constrained nonlinear systems[J]. Applied Mathematics and Computation, 2008, 195(2): 558-575. doi: 10.1016/j.amc.2007.05.066
    [4]
    Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton methods[J].SIAM J Numer Anal, 1982, 19(2): 400-408. doi: 10.1137/0719025
    [5]
    Shen W P, Li C. Kantorovich-type convergence criterion for inexact Newton methods[J].Appl Numer Math, 2009, 59(7): 1599-1611. doi: 10.1016/j.apnum.2008.11.002
    [6]
    Gould Ni I M, Lucidi S, Roma M, Toint P H L. Solving the trust-region subproblem using the Lanczos method[J]. SIAM Journal on Optimization, 1999, 9(2): 504-525. doi: 10.1137/S1052623497322735
    [7]
    Gripp R S, Lampariello F, Lucidi S.A nonmonotone line search technique for Newton’s methods[J]. SIAM J Numer Anal, 1986, 23(4): 707-716. doi: 10.1137/0723046
    [8]
    Guo P H, Zhu D T. A nonmonotonic reduced projected Hessian method via an affine scaling interior modified gradient path for bounded-constrained optimization[J].Journal of Systems Science and Complexity, 2008, 21(1): 85-113. doi: 10.1007/s11424-008-9069-y
    [9]
    Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.
    [10]
    Floudas C A, Pardalos P M. Handbook of Test Problems in Local and Global Optimization[M].Dordrecht: KluwTer Academic, 1999.
    [11]
    Schittkowski K. More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems[M]. Heidelberg, Berlin: Springer-Verlag, 1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1439) PDF downloads(744) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return