Citation: | QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local Projection Stabilized Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(5): 618-630. doi: 10.3879/j.issn.1000-0887.2010.05.013 |
[1] |
Franca L P, Frey S L. Stabilized finite element methods: Ⅱ.The incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Eng, 1992, 99(2/3):209-233. doi: 10.1016/0045-7825(92)90041-H
|
[2] |
Tobiska L, Verfürth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation[J]. SIAM J Numer Anal, 1996, 33(1):107-127. doi: 10.1137/0733007
|
[3] |
Li J, He Y N, Chen Z X. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs[J]. Computing, 2009, 86(1):37-51. doi: 10.1007/s00607-009-0064-5
|
[4] |
He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Applied Numerical Mathematics, 2008, 58(10):1503-1514. doi: 10.1016/j.apnum.2007.08.005
|
[5] |
Li J, He Y N, Xu H. A multi-level stabilized finite element method for the stationary Navier-Stokes equations[J]. Comput Methods Appl Mech Eng, 2007, 196(4/6):2852-2862. doi: 10.1016/j.cma.2006.12.007
|
[6] |
Li J, He Y N, Chen Z X. A new stabilized FEM for the transient Navier-Stokes equations[J]. Comput Methods Appl Mech Engng,2007, 197(1/4):22-35. doi: 10.1016/j.cma.2007.06.029
|
[7] |
覃燕梅,冯民富,周天孝. 瞬态Navier-Stokes方程的一种新的全离散粘性稳定化方程[J].应用数学和力学,2009, 30(7):783-778.
|
[8] |
骆艳,冯民富. 可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法[J].应用数学和力学,2008, 29(2):157-168.
|
[9] |
罗琨,冯民富,王成. 一个精确的免闭锁四边形板元[J].四川大学学报(工程科学版), 2006, 38(1):44-48.
|
[10] |
Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J].Calcolo, 2001, 38(4):173-199. doi: 10.1007/s10092-001-8180-4
|
[11] |
Becker R, Braack M. A two-level stabilization scheme for the Navier-Stokes equations[C]Feistauer M, Doleji V, Knobloch P, et al.Numerical Mathematics and Advanced Applications,Berlin: Springer-Verlag, 2003, 123-130.
|
[12] |
Braack M, Burman E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43(6):2544-2566. doi: 10.1137/050631227
|
[13] |
Matthies G, Skrzypacz P, Tobiska L. A unified converagence analysis for local projection stabilisations applied to the Oseen problem[J]. Mathematical Modelling and Numerical Analysis, 2007, 41(4).
|
[14] |
Codina R, Blasco J. Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations[J]. Numer Math, 2000,87(1):59-81. doi: 10.1007/s002110000174
|
[15] |
Codina R, Blasco J. A finite element formulation for the Stokes problem allowing equal velocity-ressure interpolation[J]. Comput Meth Appl Mech Engng, 1997, 143(3/4):373-391. doi: 10.1016/S0045-7825(96)01154-1
|
[16] |
Codina R, Blasco J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput Methods Appl Mech Engng, 2000, 182(3/4):277-300. doi: 10.1016/S0045-7825(99)00194-2
|
[17] |
Codina R,Vzquez M, Zienkiewicz O C. A general algorithm for compressible and incompressible follow—part Ⅲ: the semiimplicit form[J]. Int J Numer Meth Fluids, 1998, 27(1/4):13-32. doi: 10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
|
[18] |
Chacn T. A term by term stabilization algorithm for the finite element solution of incompressible flow problems[J]. Numerische Mathematik, 1998, 79(2):283-319. doi: 10.1007/s002110050341
|
[19] |
Franca L P, Frey S L. Stabilized finite element methods: II.The incompressible Navier-Stokes equations[J]. Comput Methods Appl Mech Eng, 1992, 99(2/3):209-233. doi: 10.1016/0045-7825(92)90041-H
|
[20] |
Tobiska L, Lube G. A modified streamline-diffusion method for solving the stationary Navier-Stokes equations[J]. Numerische Mathematik, 1991, 59(1):13-29. doi: 10.1007/BF01385768
|
[21] |
Tobiska L, Verfrth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations[J]. SIAM J.Numerical Analy, 1996, 33(1):107-127. doi: 10.1137/0733007
|
[22] |
Girault V, Raviart P. Finite Element Methods for the Navier-Stokes Equations[M].Berlin:Springer, 1986.
|