QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local Projection Stabilized Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(5): 618-630. doi: 10.3879/j.issn.1000-0887.2010.05.013
Citation: QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local Projection Stabilized Finite Element Method for the Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2010, 31(5): 618-630. doi: 10.3879/j.issn.1000-0887.2010.05.013

Local Projection Stabilized Finite Element Method for the Navier-Stokes Equations

doi: 10.3879/j.issn.1000-0887.2010.05.013
  • Received Date: 2009-10-26
  • Rev Recd Date: 2010-03-22
  • Publish Date: 2010-05-15
  • The results of Matthies, Skrzypacz and Tubiska for the Oseen problem to the Navier-Stokes problem were extended. For the stationary incompressible Navier-Stokes equations, a local projection stabilized finite element scheme was proposed. The schem eovercomes convection dominated and ameliorates the restrictiveinf-supcondition. Local projection schemes were derived not only as a two-level approach but also for pairs of spaces which were defined on the samemesh. This class of stabilized schemes uses approxmiation and projection spaces defined on the same mesh and leads to much more compact stencils than in the two-level approach. On the same mesh, bes ides the class of local projection stabilization by enrichment of the approximation spaces, two new classes of local projection stabilization of the approximation spaces which dont. need to be enriched by bubble functions are derived. Based on a special in terpolation, the stability and an optimal priorierror estimates were shown. Finally, the numerical tests and the numerical computations show that the numerical results agree with some ben chmark solutions, which further poved the correctness of the theoretical analysis.
  • loading
  • [1]
    Franca L P, Frey S L. Stabilized finite element methods: Ⅱ.The incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Eng, 1992, 99(2/3):209-233. doi: 10.1016/0045-7825(92)90041-H
    [2]
    Tobiska L, Verfürth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation[J]. SIAM J Numer Anal, 1996, 33(1):107-127. doi: 10.1137/0733007
    [3]
    Li J, He Y N, Chen Z X. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs[J]. Computing, 2009, 86(1):37-51. doi: 10.1007/s00607-009-0064-5
    [4]
    He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Applied Numerical Mathematics, 2008, 58(10):1503-1514. doi: 10.1016/j.apnum.2007.08.005
    [5]
    Li J, He Y N, Xu H. A multi-level stabilized finite element method for the stationary Navier-Stokes equations[J]. Comput Methods Appl Mech Eng, 2007, 196(4/6):2852-2862. doi: 10.1016/j.cma.2006.12.007
    [6]
    Li J, He Y N, Chen Z X. A new stabilized FEM for the transient Navier-Stokes equations[J]. Comput Methods Appl Mech Engng,2007, 197(1/4):22-35. doi: 10.1016/j.cma.2007.06.029
    [7]
    覃燕梅,冯民富,周天孝. 瞬态Navier-Stokes方程的一种新的全离散粘性稳定化方程[J].应用数学和力学,2009, 30(7):783-778.
    [8]
    骆艳,冯民富. 可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法[J].应用数学和力学,2008, 29(2):157-168.
    [9]
    罗琨,冯民富,王成. 一个精确的免闭锁四边形板元[J].四川大学学报(工程科学版), 2006, 38(1):44-48.
    [10]
    Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J].Calcolo, 2001, 38(4):173-199. doi: 10.1007/s10092-001-8180-4
    [11]
    Becker R, Braack M. A two-level stabilization scheme for the Navier-Stokes equations[C]Feistauer M, Doleji V, Knobloch P, et al.Numerical Mathematics and Advanced Applications,Berlin: Springer-Verlag, 2003, 123-130.
    [12]
    Braack M, Burman E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43(6):2544-2566. doi: 10.1137/050631227
    [13]
    Matthies G, Skrzypacz P, Tobiska L. A unified converagence analysis for local projection stabilisations applied to the Oseen problem[J]. Mathematical Modelling and Numerical Analysis, 2007, 41(4).
    [14]
    Codina R, Blasco J. Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations[J]. Numer Math, 2000,87(1):59-81. doi: 10.1007/s002110000174
    [15]
    Codina R, Blasco J. A finite element formulation for the Stokes problem allowing equal velocity-ressure interpolation[J]. Comput Meth Appl Mech Engng, 1997, 143(3/4):373-391. doi: 10.1016/S0045-7825(96)01154-1
    [16]
    Codina R, Blasco J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput Methods Appl Mech Engng, 2000, 182(3/4):277-300. doi: 10.1016/S0045-7825(99)00194-2
    [17]
    Codina R,Vzquez M, Zienkiewicz O C. A general algorithm for compressible and incompressible follow—part Ⅲ: the semiimplicit form[J]. Int J Numer Meth Fluids, 1998, 27(1/4):13-32. doi: 10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
    [18]
    Chacn T. A term by term stabilization algorithm for the finite element solution of incompressible flow problems[J]. Numerische Mathematik, 1998, 79(2):283-319. doi: 10.1007/s002110050341
    [19]
    Franca L P, Frey S L. Stabilized finite element methods: II.The incompressible Navier-Stokes equations[J]. Comput Methods Appl Mech Eng, 1992, 99(2/3):209-233. doi: 10.1016/0045-7825(92)90041-H
    [20]
    Tobiska L, Lube G. A modified streamline-diffusion method for solving the stationary Navier-Stokes equations[J]. Numerische Mathematik, 1991, 59(1):13-29. doi: 10.1007/BF01385768
    [21]
    Tobiska L, Verfrth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations[J]. SIAM J.Numerical Analy, 1996, 33(1):107-127. doi: 10.1137/0733007
    [22]
    Girault V, Raviart P. Finite Element Methods for the Navier-Stokes Equations[M].Berlin:Springer, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1723) PDF downloads(771) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return