HUANG Hai-ming, XU Xiao-liang. Simulation on Motion of Particles in Vortex Merging Process[J]. Applied Mathematics and Mechanics, 2010, 31(4): 433-442. doi: 10.3879/j.issn.1000-0887.2010.04.005
Citation: HUANG Hai-ming, XU Xiao-liang. Simulation on Motion of Particles in Vortex Merging Process[J]. Applied Mathematics and Mechanics, 2010, 31(4): 433-442. doi: 10.3879/j.issn.1000-0887.2010.04.005

Simulation on Motion of Particles in Vortex Merging Process

doi: 10.3879/j.issn.1000-0887.2010.04.005
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-03-03
  • Publish Date: 2010-04-15
  • In two-phase flow,the vortex merging in fluences both flow evolution and particles motion.With the help of the blobs-splitting-and-merging scheme,the vortex merging was calculated by using a corrected core spreading vortex method(CC SVM);based on these,the particlesmotion in vortex merging process was calculated according to the particle kinetic model. As the results indicate,the particle traces are spiral lines,keeping the same rotation direction with the spinning vortex;the center of particles group is in agreement with that of the merged vortex;the merging tmie is determined by the circulation and initial ratio of the vortex radius and vortex centerd istance;and in a certain initial condition,a stretched particle trail is generated,which is determined by the viscosity,the relative position between particles and vortex, and the unsymm etrical circulation of the two merging vortexes.
  • loading
  • [1]
    李志辉, 张涵信. 稀薄流到连续流的气体运动论模型方程算法研究[J]. 力学学报, 2002, 34(2):145-155.
    [2]
    童秉纲,尹协远. 关于涡方法的讨论[J]. 空气动力学学报, 1992, 10(1): 1-7.
    [3]
    黄远东,吴文权.液固两相圆柱绕流尾迹内颗粒扩散分布的离散涡数值研究[J]. 应用数学和力学, 2006, 27(4): 477-483. doi: 10.shtml
    [4]
    张会强, 王赫阳,王希麟,等.两相混合层中颗粒运动的数值模拟[J]. 工程热物理学报, 2000, 21(1): 115-119.
    [5]
    Leonard A. Vortex methods for flow simulations [J]. J Comput Phys, 1980, 37(3): 289-335. doi: 10.1016/0021-9991(80)90040-6
    [6]
    Rossi L. Resurrecting core spreading vortex methods: a new scheme that is both deterministic and convergent [J]. SIAM J Sci Com, 1996, 17(2): 370-397. doi: 10.1137/S1064827593254397
    [7]
    Shiels D. Simulation of controlled bluff body flow with a viscous vortex method [D]. PhD thesis. California: California Institute of Technology, 1998.
    [8]
    李永光, 林宗虎. 气液两相涡街稳定性的研究[J]. 力学学报, 1998, 30(2):138-144.
    [9]
    Huang M J. Diffusion via splitting and remeshing via merging in vortex methods [J]. International Journal for Numerical Methods in Fluids, 2005, 48(5): 521-539. doi: 10.1002/fld.947
    [10]
    Koumoutsakos P,Leonard A. Boundary conditions for viscous vortex methods[J]. Journal of Computational Physics, 1994, 113(1): 53-61.
    [11]
    Greengard C. The core-spreading vortex method approximations the wrong equation [J]. J Comput Phys, 1985, 61(2): 345-348. doi: 10.1016/0021-9991(85)90091-9
    [12]
    Huang M J. The physical mechanism of symmetric vortex merger: a new viewpoint [J]. Physics of Fluids, 2005, 17(7): 1-7.
    [13]
    Takashi Nishikawa, Zoltan Toroczkai. Finite-size effects on active chaotic advection[J]. Physical Review E,2002, 65(2): 1-11.
    [14]
    吴柏翰.二维对称漩涡对合并动力学之研究 [D].台湾:国立台湾大学, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1175) PDF downloads(813) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return