Citation: | WANG Wan-yi, LIAO Jen-yi, HOURNG Lih-wu. Dynamic Analysis of Redesigned Systems Using an Algebraic Method[J]. Applied Mathematics and Mechanics, 2010, 31(2): 171-179. doi: 10.3879/j.issn.1000-0887.2010.02.006 |
[1] |
Pomazal R J. The effect of local modification on the eigenvalues and eigenvectors of damped linear systems[D]. PhD Dissertation. Michigan: Michigan Technology University, 1969.
|
[2] |
Pomazal R J. Local modification of damped linear systems[J]. AIAA Journal, 1971, 9(11): 2216-2221. doi: 10.2514/3.50028
|
[3] |
Hallquist J O. An efficient method for determining the effects of mass modifications in damped linear systems[J]. Journal of Sound and Vibration, 1974, 44(3): 449-459.
|
[4] |
Chou C M. Structural dynamics modification of 3D beam elements using a local eigenvalue modification procedure[D]. PhD Dissertation. Massachusetts: University of Lowell, 1984.
|
[5] |
Aronszajn N, Weinstein A.On the unified theory of eigenvalues of plates and membranes[J]. Amer J Math,1945,64(1): 623-645.
|
[6] |
Beattie C, Fox D W. Schur complements and Weinstein-Aronszajn theory for modified matrix eigenvalue problem[J]. Linear Algebra and Its Applications, 1988,108: 37-61. doi: 10.1016/0024-3795(88)90178-4
|
[7] |
Arbenz P, Golub G H. On the spectral decomposition of the Hermitian matrices modified by low rank perturbations with applications[J]. SIAM Journal of Mat Anal and Appl, 1988, 9(1): 40-58. doi: 10.1137/0609004
|
[8] |
Liao J Y, Tse C C. An algebra approach for the modal analysis of synthesized structures[J]. Mechanical System and Signal Processing, 1993,7(1): 89-104. doi: 10.1016/0888-3270(93)90007-J
|
[9] |
Avitabile P. Twenty years of structural synamic modification—a review[J]. Sound and Vibration, 2003,37: 14-27.
|
[10] |
Lancaster P. Model-updating for self-adjoint quadratic eigenvalue problem[J]. Linear Algebra and Its Applications, 2008, 428(11/12): 2778-2790. doi: 10.1016/j.laa.2007.12.023
|
[11] |
Datta B N, Deng S, Sokolov V O, et al. An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1759-1772. doi: 10.1016/j.ymssp.2008.07.017
|
[12] |
Johnson C R, Furtado S. A generalization of Sylvester’s law of inertia[J]. Linear Algebra and Its Application, 2001, 338(1/3): 287-290. doi: 10.1016/S0024-3795(01)00408-6
|
[13] |
Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structures[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263-284. doi: 10.1093/qjmam/24.3.263
|
[14] |
Trench W F. Numerical solution of eigenvalue problem for Hermitian Toeplitz matrices[J]. SIAM Journal of Mat Anal and Appl, 1989, 10(2): 135-146. doi: 10.1137/0610010
|
[15] |
Brent R P. Algorithms for Minimization Without Derivatives[M]. New Jersey: Prentice-Hall, 1973.
|
[16] |
Sehmi N S. Large Order Structural Eigenanalysis Techniques[M]. West Sussex: Ellis Horwood Limited, 1989.
|
[17] |
Turkkila T. Use of LDLT decomposition in solution of eigenproblem[C] Lund E, Olhoff N, Stegmann J. 15th Nordic Seminar on Computational Mechanics. Alborg, Denmark, 2002:151-154.
|
[18] |
Rayleigh J W S. The Theory of Sound[M]. Vol 1, 2.New York: Dover, 1945.
|
[19] |
Simpson A. A Newtonian procedure for the solution of Ex=λAx[J]. Journal of Sound and Vibration, 1982, 82(2): 161-170. doi: 10.1016/0022-460X(82)90526-0
|
[20] |
Liao J Y, Tse C C. A comparison of error bounds for eigenvalues in structural modification problem[J]. Mechanical System and Signal Processing, 1993, 7(3): 273-279. doi: 10.1006/mssp.1993.1013
|