WANG Wan-yi, LIAO Jen-yi, HOURNG Lih-wu. Dynamic Analysis of Redesigned Systems Using an Algebraic Method[J]. Applied Mathematics and Mechanics, 2010, 31(2): 171-179. doi: 10.3879/j.issn.1000-0887.2010.02.006
Citation: WANG Wan-yi, LIAO Jen-yi, HOURNG Lih-wu. Dynamic Analysis of Redesigned Systems Using an Algebraic Method[J]. Applied Mathematics and Mechanics, 2010, 31(2): 171-179. doi: 10.3879/j.issn.1000-0887.2010.02.006

Dynamic Analysis of Redesigned Systems Using an Algebraic Method

doi: 10.3879/j.issn.1000-0887.2010.02.006
  • Received Date: 1900-01-01
  • Rev Recd Date: 2009-12-30
  • Publish Date: 2010-02-15
  • Bymatrixm odification,the redesign of as tructural system was investigated.The inertia congruence trans formation was adopted to find the laten troots of a dynamic stiffness matrix,and a method for determining its eigenvalue was proposed.The characteristics of the laten tvector for a known latentroo,tand a method for computing it,were studied.The mode shapes of a redesigned structurem ust be handled differently based on whether the structure exhibits are persistentor non-persistent natural frequencies.
  • loading
  • [1]
    Pomazal R J. The effect of local modification on the eigenvalues and eigenvectors of damped linear systems[D]. PhD Dissertation. Michigan: Michigan Technology University, 1969.
    [2]
    Pomazal R J. Local modification of damped linear systems[J]. AIAA Journal, 1971, 9(11): 2216-2221. doi: 10.2514/3.50028
    [3]
    Hallquist J O. An efficient method for determining the effects of mass modifications in damped linear systems[J]. Journal of Sound and Vibration, 1974, 44(3): 449-459.
    [4]
    Chou C M. Structural dynamics modification of 3D beam elements using a local eigenvalue modification procedure[D]. PhD Dissertation. Massachusetts: University of Lowell, 1984.
    [5]
    Aronszajn N, Weinstein A.On the unified theory of eigenvalues of plates and membranes[J]. Amer J Math,1945,64(1): 623-645.
    [6]
    Beattie C, Fox D W. Schur complements and Weinstein-Aronszajn theory for modified matrix eigenvalue problem[J]. Linear Algebra and Its Applications, 1988,108: 37-61. doi: 10.1016/0024-3795(88)90178-4
    [7]
    Arbenz P, Golub G H. On the spectral decomposition of the Hermitian matrices modified by low rank perturbations with applications[J]. SIAM Journal of Mat Anal and Appl, 1988, 9(1): 40-58. doi: 10.1137/0609004
    [8]
    Liao J Y, Tse C C. An algebra approach for the modal analysis of synthesized structures[J]. Mechanical System and Signal Processing, 1993,7(1): 89-104. doi: 10.1016/0888-3270(93)90007-J
    [9]
    Avitabile P. Twenty years of structural synamic modification—a review[J]. Sound and Vibration, 2003,37: 14-27.
    [10]
    Lancaster P. Model-updating for self-adjoint quadratic eigenvalue problem[J]. Linear Algebra and Its Applications, 2008, 428(11/12): 2778-2790. doi: 10.1016/j.laa.2007.12.023
    [11]
    Datta B N, Deng S, Sokolov V O, et al. An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint[J]. Mechanical Systems and Signal Processing, 2009, 23(6): 1759-1772. doi: 10.1016/j.ymssp.2008.07.017
    [12]
    Johnson C R, Furtado S. A generalization of Sylvester’s law of inertia[J]. Linear Algebra and Its Application, 2001, 338(1/3): 287-290. doi: 10.1016/S0024-3795(01)00408-6
    [13]
    Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structures[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263-284. doi: 10.1093/qjmam/24.3.263
    [14]
    Trench W F. Numerical solution of eigenvalue problem for Hermitian Toeplitz matrices[J]. SIAM Journal of Mat Anal and Appl, 1989, 10(2): 135-146. doi: 10.1137/0610010
    [15]
    Brent R P. Algorithms for Minimization Without Derivatives[M]. New Jersey: Prentice-Hall, 1973.
    [16]
    Sehmi N S. Large Order Structural Eigenanalysis Techniques[M]. West Sussex: Ellis Horwood Limited, 1989.
    [17]
    Turkkila T. Use of LDLT decomposition in solution of eigenproblem[C] Lund E, Olhoff N, Stegmann J. 15th Nordic Seminar on Computational Mechanics. Alborg, Denmark, 2002:151-154.
    [18]
    Rayleigh J W S. The Theory of Sound[M]. Vol 1, 2.New York: Dover, 1945.
    [19]
    Simpson A. A Newtonian procedure for the solution of Ex=λAx[J]. Journal of Sound and Vibration, 1982, 82(2): 161-170. doi: 10.1016/0022-460X(82)90526-0
    [20]
    Liao J Y, Tse C C. A comparison of error bounds for eigenvalues in structural modification problem[J]. Mechanical System and Signal Processing, 1993, 7(3): 273-279. doi: 10.1006/mssp.1993.1013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1409) PDF downloads(892) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return