Citation: | QIN Zhao-hong, CHEN Yu-shu, LI Jun. Singularity Analysis of a Two-Dimensional Elastic Cable With 1: 1 Internal Resonance[J]. Applied Mathematics and Mechanics, 2010, 31(2): 134-142. doi: 10.3879/j.issn.1000-0887.2010.02.002 |
[1] |
Rao G, Iyengar R N. Internal resonance and non-linear response of cable under periodic excitation [J]. Journal of Sound and Vibration,1991, 149(1): 25-41. doi: 10.1016/0022-460X(91)90909-4
|
[2] |
Lee C L, Perkins C N. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance [J]. Nonlinear Dynamic, 1992, 3(6): 465-490.
|
[3] |
Benedettini F, Rega G, Alaggio R. Non-linear oscillation of four-degree-of-freedom model of suspended cable under multiple internal resonance conditions [J]. Journal Sound and Vibration, 1995, 182(5): 775-789. doi: 10.1006/jsvi.1995.0232
|
[4] |
Zhang W, Tang Y. Global dynamics of the cable under combined parametrical and external excitations [J]. International Journal of Non-Linear Mechanics, 2002,37(3): 505-526. doi: 10.1016/S0020-7462(01)00026-9
|
[5] |
王连华, 赵跃宇. 悬索在考虑1∶3内共振情况下的动力学行为[J]. 固体力学学报, 2006, 27(3): 230-236.
|
[6] |
赵跃宇, 李永鼎, 王连华, 等. 悬索的超谐共振与1∶3内共振分析[J]. 动力学与控制学报, 2007, 5(2): 112-117.
|
[7] |
赵跃宇, 李永鼎, 王连华. 悬索的多重内共振研究[J]. 力学季刊, 2008, 29(1): 15-23.
|
[8] |
Golubistky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory [M]. VolⅠ, Ⅱ. New York: Springer-Verlag, 1985, 1988.
|
[9] |
Zhao Y Y, Wang L H, Chen D L. Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable [J]. Journal of Sound and Vibration, 2002, 255(1):43-59. doi: 10.1006/jsvi.2001.4151
|
[10] |
Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering[M]. London: Springer, 1998.
|