CHENG Gui-fang, MU Xiao-wu. Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014
Citation: CHENG Gui-fang, MU Xiao-wu. Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems[J]. Applied Mathematics and Mechanics, 2009, 30(8): 1003-1008. doi: 10.3879/j.issn.1000-0887.2009.08.014

Finite-Time Stability With Respect to a Closed Invariant Set for a Class of Discontinuous Systems

doi: 10.3879/j.issn.1000-0887.2009.08.014
  • Received Date: 2008-10-31
  • Rev Recd Date: 2009-06-29
  • Publish Date: 2009-08-15
  • The problem of finite-time stability is mainly discussed with respect to a closed (not necessarily compact) invariant set for a class of nonlinear systems with discontinuous righthand sides in the sense of Filippov solutions. When Liapunov function is Lipschitz continuous and regular, Liapunov theorem on finite-time stability with respect to a closed invariant set was presented.
  • loading
  • [1]
    Matrosov V M.On the stability of motion[J].J Appl Math Mech,1962,26(4):1337-1353. doi: 10.1016/0021-8928(62)90010-2
    [2]
    贺建勋.关于不连续系统稳定性的比较原理[J].厦门大学学报(自然科学版),1982,13(2):117-126.
    [3]
    Shevitz Daniel,Paden Bard.Lyapunov stability theory of nonsmooth systems[J].IEEE Transactions on Automatic Control,1994,39(9):1910-1914. doi: 10.1109/9.317122
    [4]
    Bacciottic A,Ceragioli F.Stability and stabilization of discontinuous systems and nonsmooth Lyapunov function[J].Esaim-Cocv,1999,4(2):361-376. doi: 10.1051/cocv:1999113
    [5]
    慕小武,程桂芳,唐风军. 非自治非光滑系统的Matrosov稳定性定理[J].应用数学学报,2007,30(1):168-175.
    [6]
    程桂芳,慕小武,丁志帅. 一类不连续非自治系统的一致最终有界性[J].应用数学学报,2007,30(4):675-681.
    [7]
    慕小武,程桂芳,丁志帅.基于向量Liapunov函数不连续系统的稳定性研究[J].应用数学和力学,2007,28(12):1441-1447.
    [8]
    Lin Y D,Sontag E D,Wang Y.A smooth converse Lyapunov theorem for robust stability[J].SIAM J Control and Optimization,1996,34(1):124-160. doi: 10.1137/S0363012993259981
    [9]
    Haimo V T.Finite time Controller[J].SIAM J Control and Optimization,1986,24(4):760-770. doi: 10.1137/0324047
    [10]
    Moulay E,Perruquetti W.Finite time stability of differential inclusions[J].IMA Journal of Mathematical Control and Information,2005,22(4):465-475. doi: 10.1093/imamci/dni039
    [11]
    Bhat S P,Bernstein D S.Continuous, finite-time stabilization of the translational and rotational double integrators[J].IEEE Transactions on Automatic Control,1998,43(5):678-682. doi: 10.1109/9.668834
    [12]
    Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM J Control and Optimization,2000,38(3):751-766. doi: 10.1137/S0363012997321358
    [13]
    Hong Y. Finite-time stabilization and stabilizability of a class controllable systems[J].Systems and Control Letters,2002,46(2):231-236. doi: 10.1016/S0167-6911(02)00119-6
    [14]
    Orlov Y.Finite time stability and robust control synthesis of uncertain switched systems[J].SIAM J Control and Optimization,2005,43(4):1253-1271.
    [15]
    Filippov A F.Differential Equations With Discontinuous Right-Hand Sides[M].Dordrecht,The Netherlands:Kluwer,1988.
    [16]
    Aubin J P,Cellina A.Differential Inclusions[M].Grundlehren der Mathematischen Wiissenschaften.New York:Springer-Verlag,1984.
    [17]
    Kim S J,Ha I J.Existence of caratheodory solutions in nonlinear systems with discontinuous switching feedback controllers[J].IEEE Transactions on Automatic Control,2004,49(7):1167-1171. doi: 10.1109/TAC.2004.831127
    [18]
    Clarke F H,Ledyaev Yu S,Stern R J,et al.Nonsmooth Analysis and Control Theory[M].Graduate Texts in Mathematics.New York:Springer-Verlag,1998.
    [19]
    Khalil H K.Nonlinear Systems[M].3rd Ed.New Jersey:Prentice Hall,2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1481) PDF downloads(1059) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return